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EXECUTIVE SUMMARY 

Various components of automated driving are present on Minnesota roadways and continue to be more 

common with technology being added to new vehicle models each year. Some of these systems rely on 

the roadway infrastructure to function as intended. This project used technology-equipped research 

vehicles to drive a subset of roadways across the state to understand potential infrastructure situations 

that could be problematic for these automated driving technologies. Findings from this study are 

intended to be used by transportation professionals and agencies to make improvements to the 

transportation system in an effort to make Minnesota roadways more suitable for automated driving 

and Advanced Driver Assistance Systems (ADAS). 

The team developed a route that was comprised of over 1000 miles of roadways across the State of 

Minnesota. The route was meant to be diverse and included a mixture of pavement types, number of 

lanes, functional classifications, traffic control devices, presence of work zones, and likelihood of 

potential environmental situations such as sun glare. While the route provided an opportunity to collect 

data, the geographic spread of the route allowed the team to also host live events in each MnDOT 

District where information was shared about Connected and Automated Vehicles in Minnesota, the 

state of the industry and vehicle technology, and observations from the drive.  

Data was gathered during the drive for use in analysis. The vehicle computers and sensors were 

operating in “shadow mode” during the drive to collect data while a human driver was in complete 

control of the vehicle at all times. This data was post-processed using lane detection algorithms to 

identify areas along the driven route where vehicles using certain ADAS features like Lane Keep Assist or 

Lane Centering may encounter issues. The project team manually reviewed the post-processed data and 

called out areas where different roadway conditions would likely cause problems or areas that appeared 

to be conducive to proper ADAS behavior. The various items identified were grouped into eight 

categories that, depending on the specific infrastructure, setting, and context could cause the 

technology to disengage and are as follows: 

• Freeway Ramps and Turn Lanes – Specifically situations where the opening is not delineated 

from the major roadway travel lane.  

• Poor Lane Line Condition and Visibility – Existing markings that have worn off substantially or 

been partially covered during maintenance activities.  

• Construction and Maintenance Activities – Existing markings covered or removed more 

conspicuously than how temporary markings are placed.  

• Poor Contrast – Light markings on light colored pavement. 

• Tight Curvature – Situations with horizontal curvature tighter than what is normally experienced 

affecting lane recognition. 

• Environmental Issues – Fog and extreme shadowing as well as other issues such as sun glare 

and precipitation.  

• Dynamic Lanes – Areas with unique pavement markings or pavement markings intended to 

illustrate two different outcomes.  



 

These different categories may have specific ties to existing policies and guidance commonly used by 

practitioners charged with maintaining and designing these roadway facilities. This study does not 

specify changes to these policies that should be enacted but rather provides the findings for existing 

committees and agency professionals to use to make improvements that in most cases will benefit both 

automated driving systems as well as human drivers.  
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 INTRODUCTION 

How ready are Minnesota Roads for Connected and Automated Vehicles (CAV)? Drive MN was an effort 

undertaken to begin answering this question based on driving a sample of Minnesota roadways of 

various settings (pavement type, functional classification, intersection control, time of day/daylight 

conditions, and roadway widths). Technology-equipped research vehicles were utilized on the drive to 

gather radar, LiDAR, and video data on over 1,000 miles of roadway. This discovery mission was meant 

to provide findings and information from the drive to key individuals and committees both within 

MnDOT as well as the Minnesota transportation industry as a whole for use in future decision making.  

1.1 PROJECT PURPOSE 

The purpose of Drive MN was to understand CAV infrastructure readiness, executed by sharing 

vehicle/infrastructure interaction with transportation professionals and elected officials. Drive MN 

consisted of three primary activities: 

• Drive: Equipped vehicles gathered data along a sampling of road types while driving to 

designated event locations around Minnesota.  

• Events: Short, demonstration events at each location showcased vehicle automation and its 

interaction with road infrastructure. 

• Post-Processing and Report: Data was post-processed to identify areas of interest. This report 

summarizes key findings about this data and participant interactions during events. 

Goal: Understand AV readiness with respect to infrastructure and policy  

There are many guiding documents and policies related to infrastructure decisions. From a pure design 

perspective, the MnDOT Facility Design Guide, MnDOT Traffic Engineering Manual, and Minnesota 

Manual of Uniform Traffic Control Devices are examples of guiding documents that shape decisions 

impacting infrastructure on a daily basis. How decisions are made through implementing infrastructure 

projects may have different levels of compatibility with CAV technologies. The same can be said of 

maintenance practices and how those efforts leave a segment of roadway after completion. 

Understanding how these elements factor into infrastructure readiness for vehicle automation was a 

critical goal of this work. 

Goal: Engage with local policy makers and transportation professionals  

Given the nature of the drive itself and the project, the team had the opportunity to build a route in a 

way that engaged with a variety of local elected officials and transportation professionals along the way. 

While the primary purpose of Drive MN was data collection, the team saw the opportunity to build off 

the 2018-19 CAV scenario planning workshops1 in which city, county, and regional transportation 

 

1 http://www.dot.state.mn.us/automated/scenario-planning-workshops.html 



   2 

 

organizations were engaged to identify challenges, opportunities, and potential responses to CAV in 

Minnesota. The focus of the engagement was to educate participants about CAV work in Minnesota, 

provide tours of vehicle technology used during the drive, and share highlights about observations made 

during the drive. 
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 PROJECT APPROACH 

The project team worked with MnDOT to thoughtfully plan both the route and event locations to best 

serve the purpose and goals of this project. Both elements were critical to procuring good, relevant data 

as well as engaging with the intended groups of people along the way. The drive took place August 15th-

18th, 2022. Each day consisted of two legs of driving and two events. Section 4.1 describes the process 

used to collect data during the drive, as well as post-processing methodology. 

2.1 ROUTING 

The route for DriveMN was curated to collect both a depth and breadth of roadway and intersection 

types across the state of Minnesota. Through all eight MnDOT districts, the overall route included the 

following characteristics as shown in Figure 1. 

 

Figure 1 - Route Summary Statistics 
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The variety in pavement material, roadway configuration, and intersection control paired with 

environmental factors such as sun glare and potential weather events made this a very diverse route. 

See Figure 2 for a map of the route. 

 

Figure 2 - Route Overview 
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Event Destinations and Route Legs 

Drive MN began and ended in the Twin Cities Metro and included stops at seven other locations. The 
locations were selected from those used in the 2018-19 CAV scenario planning workshops. The stops at 
each location necessitated the following route breakdown into eight legs as follows: 

• Leg 1: St. Louis Park to St. Cloud 

• Leg 2: St. Cloud to Duluth 

• Leg 3: Duluth to Bemidji 

• Leg 4: Bemidji to Moorhead 

• Leg 5: Moorhead to Marshall 

• Leg 6: Marshall to Mankato 

• Leg 7: Mankato to Winona 

• Leg 8: Winona to U of M Campus 
 

Guiding Principles 

The route and leg splits were developed and selected based on the following guiding principles: 
1. The duration and distance of each leg fit into the overall schedule needs. 
2. 10-20% of total route (max) to be non-Trunk Highway. The intent of the study was to analyze 

Trunk Highway performance with Advanced Driver Assistant Systems (ADAS) equipment, which 
can be used as surrogate data in discussing performance on the local system as well.  

3. Encounter a reasonable cross section of the following characteristics: 
a. Pavement type (bituminous vs. concrete) 
b. Functional classification 
c. Traffic control (signals, stop signs, roundabouts, RCIs) 
d. Number of lanes 
e. Sun glare vs. normal driving conditions 
f. Construction vs. normal roadway conditions 

Route Data 

In total, the overall route allowed the team to analyze 1,086 miles of roadways across the State of 
Minnesota. The legs of the route were developed with the Guiding Principles in mind and are shown in 
the route figures in APPENDIX A: Route Maps. The mapping displays characteristics about each leg as 
well as where particular traffic control devices, potential sun glare, and construction were encountered. 
The route characteristics are also summarized in Figure 3 through Figure 7 by leg and for the overall 
drive. The horizontal dotted lines in Figure 3 through Figure 6 represent the statewide split for each 
metric to provide context as to how the route compares to statewide statistics.2  
 

 

2 Statewide statistics were developed based on available GIS data that was not independently verified by the project team.  
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Figure 3 - Route Jurisdiction Breakdown3  

 

Figure 4 - Route Surface Type Breakdown 

 

3 Share of local routes is significantly higher on Leg 6 due to construction and subsequent detour along TH 14 west of Mankato. 
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Figure 5 - Route Number of Lanes Breakdown4 

 

Figure 6 - Route Functional Classification Breakdown5 

 

4 Due to log scale, any values under 1% are not shown. 
5 Due to log scale, any values under 1% are not shown. 
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Figure 7 - Route Traffic Control Type Breakdown 
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2.2 EVENTS 

Each of the events included a presentation about the state of CAV initiatives in Minnesota, information 

about vehicle technology, and preliminary observations from the drive.  

The presentation was followed by an opportunity for question-and-answer, tours of the vehicles, and 

breakout conversations. This allowed the team to glean insight from local roadway and political 

jurisdictions, as well as share thoughts, concerns, experiences, and observations unique to the area. 

Figure 8 exemplifies an event format and turnout. Ultimately, these events and conversations allowed 

the team to better connect with statewide and local planners to learn and prepare for future CAV use in 

Minnesota. 

   

Figure 8 - Event Held in Bemidji 

 

Event Summaries 

High-level summary information can be found in Table 1 to provide a sense of both event scale and 

attendance. A frequently asked questions list was also developed summarizing the events which can be 

found in APPENDIX B: Frequently Asked Questions from Events. 
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Table 1: Event Locations and Attendees 

Location 
Registered 

Attendance 
Authorities and Personnel Present 

Saint Cloud 12 Attendees 
State Patrol, Saint Cloud APO, Sherburne County, Congress members, 

Benton County 

Duluth 21 Attendees 

Douglas County, Metro Interstate Council (MIC), Duluth Transit 

Authority (DTA), MnDOT, St. Louis County, UW-Superior, Duluth City 

Council, Duluth Seaway Port Authority (DSPA), Various Other Industry 

Professionals 

Bemidji 7 Attendees 
MnDOT- D2, State Patrol, City of Bemidji, Various Other Industry 

Professionals 

Moorhead 14 Attendees 

Grand Forks/East Grand Forks MPO, AAA, North Dakota State 

University, Fargo/Moorhead Metro Council of Governments, MnDOT- 

D4, Minnesota State University- Moorhead, City of Moorhead, City of 

Barnesville 

Marshall 6 Attendees MnDOT- D8 Traffic, State Patrol, Lincoln City Highway Department 

Mankato 17 Attendees 
MnDOT, City of St. Peter, Nicollet County, Various Other Industry 

Professionals 

Winona 9 Attendees 
MnDOT, Plum Catalyst, Winona County, Various Other Industry 

Professionals 

Twin Cities 50+ Attendees 

NiceRide MN, University of Minnesota, FHWA, MN Senate and House 

of Representatives, MnDOT, Minnesota Information Technology 

(MNIT), Various Other Industry Professionals  

 

After Survey Results 

Following the Drive MN events, the team sent out a thank you email to attendees that included a survey 

to gauge general acceptance of CAV in Minnesota. Of the approximately 101 total Drive MN event 

attendees, fourteen responded to the follow-up survey and results were compared to previous CAV 

surveys at both the national level and within Minnesota.  

Figure 9 below is a side-by-side comparison of the 2018 AAA (American Automobile Association) survey, 

the 2018 Minnesota State Fair survey, 2020 live CAV demonstrations conducted with the Minneapolis/St 

Paul Metropolitan region, and the 2022 Drive MN survey. The surveys are not an apples-to-apples 
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comparison6 or necessarily all statistically significant; however, acceptance of CAV appears to be 

trending up with a positive correlation between the level of demonstration exposure and acceptance to 

an automated vehicle. 

 

Figure 9 - Survey Result Comparison7 

*After the live demo experience, 65% of attendees stated they wanted more automated vehicle technology in their next vehicle which shows a 

decrease from the previous Minnesota State Fair static demo. This response was accompanied with questions and concerns about the cost of 

the technology and responsibility and ethical considerations for owning that technology. This led the demonstration team to believe the 

experience made the technology more real to attendees. It should also be noted that the research vehicle used is more technical in appearance 

and doesn’t resemble what a personal vehicle would look like. 

 

6 Each of these surveys was not based on the same style of event. For example, some included live demonstration and some did not. The data 
presented at each was also not the exact same either.   

7 A summary of each survey is as follows: 

• 2017 AAA Survey: An online nationwide survey in which respondents did not have any exposure to a connected and automated 

vehicle.  

• 2018 Minnesota State Fair Survey: A survey administered (in person) to respondents who participated in a static demonstration 

meaning they did not ride in an automated vehicle but were able to see an automated vehicle and talk to an attendant about the 

technology.  

• 2020 Live CAV Minnesota Survey: A survey administered (in person) to participants after they took a ride in a level 2 automated 

research vehicle. 

• 2022 Drive MN Survey: An online survey administered to a group who had recently attended a static demonstration at a Drive MN 

event location. 
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 THE VEHICLES AND AUTOMATION TECHNOLOGIES 

While fully automated vehicles are still being developed and tested, components of automation are very 

common on our roadways today. The varying levels of automation available in new cars today drove the 

need and raised the importance of this project and its findings. The Society of Automotive Engineers lists 

six levels of automation in vehicles, the first three leave the driver responsible for monitoring the road 

conditions, traffic, weather, and other surroundings. The six levels are as follows: 

1. No automation (Level 0): Driver handles steering, throttle, and braking with no assistance. 

2. Driver Assistance (Level 1): Car can handle some elements of steering, throttle, and braking. 

Requires constant driver attention. Able to operate in a limited Operational Design Domain 

(ODD) 

3. Partial Automation (Level 2): Car can handle all facets of steering, throttle, and braking. 

Requires constant driver attention. Able to operate in a limited ODD.  

4. Conditional Automation (Level 3): Car monitors surroundings and handles all steering, throttle, 

and brake in certain environments. Driver must be ready to intervene if car requests it. Able to 

operate in a limited ODD.  

5. High automation (Level 4): Car monitors surroundings and handles all steering, throttle, and 

brake in a wider range of environments, but not all (such as severe weather). Driver is not 

required once automation is turned on. Able to operate in a limited ODD. 

6. Full automation (Level 5): The car can handle all elements of driving in an unlimited ODD. Driver 

is not required once automation is turned on. 

 

3.1 ADAS TECHNOLOGIES 

Over 90% (AAA, 2019) of new vehicles sold come equipped with at least one Advanced Driver Assistance 

System (ADAS). Approximately 50% of these vehicles come equipped with Lane Keep Assist (Consumer 

Reports, 2021), a system designed to assist the driver in preventing the vehicle from departing the lane 

when active. The Insurance Institute for Highway Safety and Highway Loss Data Institute studied the 

effects of such features in passenger vehicles and estimate significant positive impacts on roadway 

safety8. Common ADAS features found in new vehicles are typically Level 0 or Level 1 systems by 

themselves, but when paired with other active systems may be considered Level 2 in total9.  

 

 

8 https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-
world-CA-benefits.pdf 
9 For example, the combination of certain Level 1 systems (Lane Centering and Adaptive Cruise Control) would be considered a Level 2 system 
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The following is a list of common ADAS technologies available on new production vehicles today. Some 

of these technologies rely on the surrounding infrastructure to function properly, namely Lane Keeping 

Assist, which was analyzed with this work.  

• Adaptive Cruise Control 

• Automatic Emergency Braking 

• Blind Spot Warning 

• Forward Collision Warning 

• Lane Keeping Assist 

While this drive did not directly analyze a fully autonomous scenario, the tools analyzed are 

foundational to understanding the capabilities and responses of the technology over various roadway 

conditions. The analysis is a step in further improving technologies, roadways, and enhancing 

driver/rider experience. Horizontal/lateral control (i.e. Lane Keep Assist) is a major element required for 

full autonomy, which is essentially the combination of full lateral and longitudinal control. With these 

technologies ever more present on new vehicles today, slowly increasing fleet penetration, 

understanding the interaction with infrastructure is critical.  

3.2 THE VEHICLES 

Two research vehicles were driven for this project: a Ford Fusion (Vehicle 1) and a Chrysler Pacifica 

(Vehicle 2). Each vehicle was outfitted with a drive-by-wire kit, numerous sensors, and significant 

computing power to handle the collection and storage of data throughout the drive. See vehicle 

equipment lists below for an inventory of sensors installed. Equipment designated with a (*) was directly 

used in collecting and storing data eventually analyzed with this project. Camera technology is 

considered the best sensor type for lane marking detection, therefore those were the sensors utilized 

for analysis purposes. 

Vehicle 1 (Figure 10) 

• (1) 64-channel Outser Lidar  

• (1) Aeye LR Ouster  

• (1) Lucid HDR Camera* 

• (1) Blackfly Camera* 

• (1) Flir Thermal Camera  

• (1) Aptiv ESR MR/LR Radar  

• (1) Trimble RTX positioning*  

• (1) Crystal Rugged Liquid cooled 
computer* 

Vehicle 2 (Figure 11) 

• (1) 64-channel Outser LiDAR 

• (2) 16-channel Ouster LiDARs 

• (4) Blackfly video cameras 

• (1) FLIR ADK thermal camera 

• (2) Conti Radar 

• (1) Novatel GNSS receiver 

• (1) Neousys Nuvo computer 
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Figure 10 - Image of Vehicle 1 Top Rack 

 

 

Figure 11 - Image of Vehicle 2 Top Rack 
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 ANALYSIS METHODOLOGY AND FINDINGS 

4.1 METHODOLOGY 

The overall methodology implemented is outlined in Figure 12 and consisted of three steps: data 

collection, post processing, and manual annotation/QAQC.  

 

Figure 12 - Analysis Methodology 

Data Collection 

Each vehicle included three team members: the driver, a traffic engineer, and a systems engineer. While 

the vehicles driven are capable of full automation in certain settings, available onboard computing 

power is not sufficient to both run active automation and collect data simultaneously. Given the main 

goal of data collection, each vehicle was 100% driven by a human during this project with no ADAS 

functions active. This meant that driving best practices were implemented whenever possible, such as 

driving in the rightmost lane, only overtaking when required, and driving the posted speed limit. The 

traffic engineer rode in the front passenger seat and was actively engaged in discussions with the driver 

and systems engineer about the status of the vehicle, as well as monitoring the infrastructure and 

environment for potential annotations. The annotation process is further described in 4.1.3 The systems 

engineer rode in a rear seat and monitored the vehicle computer and sensor suite to keep all systems 

active, functioning, and collecting data during the drive. 

Between the two vehicles, at least 4.2 terabytes of data were collected during the drive and stored for 

post processing. Note that both Vehicle 1 and Vehicle 2 collected data, however only the data from 

Vehicle 1 was used in post processing. Data collected from Vehicle 2 was considered backup data in the 

event data from Vehicle 1 was compromised. 

Post Processing 

The main benefit of collecting data during the drive and using post processing is that the experience 

captured during the driven route can be played back as many times as desired using different algorithms 

simulating various ADAS technologies – namely lane keep assist. A secondary benefit is that flagged 

areas where the system fails can be reviewed in detail to better understand the reasons for failure. The 

other option would have been to drive the route with ADAS technologies active and annotate issues on 

the fly, which was not preferred by the project team given the added possibilities of missing key items.  

Data Collection

•Video Recordings
•Geocoded data 

Post Processing

•Use footage in 
algorithms that simulate 
ADAS technologies

Manual Annotation 
and QAQC

•Manual notes taken 
during drive
•Footage review
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For this project, data from two cameras was processed through two unique algorithms10, generating 

four computing instances to validate conditions and findings. The first step in the processing involves the 

algorithm placing raw detections (tiny dots) in places where there is enough contrast. During the second 

step, the algorithm attempts to join those dots into best fit lines. The line fitment is controlled by 

parameters that determine what is possible or not. For example, the algorithm would not draw a line in 

a horizontal manner, in a zigzag pattern, or if lines crossed. Ultimately, if the computer has enough 

confidence in what it sees it produces a virtual line that should overlay the marked line on the 

pavement.  

Manual Annotation and QAQC 

Annotation occurred two separate times during the process. First, geocoded annotations were entered 

during the drive to flag certain elements of interest. These included areas of concern related to 

infrastructure condition, encounters with vulnerable road users, sun glare and other environmental 

influences, as well as areas where both the driver and engineer believed the roadway facilities were very 

suitable for ADAS use. The first round of annotation was done based only on the suspicion of issues or 

high suitability. Second, manual annotations were completed in the form of written or typed notes 

based on the raw output from the postprocessing exercise to perform quality checks on the results. 

These were utilized to confirm or better define why the software process flagged certain areas along the 

route. For example, if the vehicle was traveling along a roadway with notable traits (marking deficiency, 

roadway curvature, weather event), a note might include information about what was observed at the 

location of the occurrence. This was a critical step to better understand why a certain area was flagged. 

Over 300 items were annotated as part of this process, and the frequency of each item’s occurrence is 

shown below in Figure 13. The frequency of the study’s callouts is not necessarily indicative of the total 

frequency on the roadways, nor do they imply or assign severity. These were items that caused 

misdetections or were good examples of proper detection that could spur further discussion and 

analysis on potential CAV behavior when encountering that specific situation. 

 

10 Algorithms used in this project (“Lanenet” and “Apollo”) are open source and not specific to any given OEM. 
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Figure 13 - Breakdown of Annotated Callouts 

4.2 FINDINGS 

As mentioned, the route for Drive MN was chosen to consume the widest variety of roadways in 

Minnesota. The 300-plus items noted during the drive were tagged according to the different categories 

shown previously in Figure 13, with some instances having up to three different tags. The team 

developed eight categories from the list of items to best highlight the overall findings. The following 

findings are purely observational and are intended to be used as indications of how vehicle automation 

may respond to similar situations found on Minnesota roadways. 

The following descriptions contain photos from the drive either from the BlackFly or Lucid cameras on 

board Vehicle 1. In each image, lanes are delineated by colored lines placed during post processing 

depicting the machine vision view derived from the sensor data. The team drew conclusions from the 

data based on how well the digitized lines aligned with the markings on the road. Note that the color of 

the lines placed on the images through postprocessing are purely for contrast purposes and do not have 

specific meanings other than that each is a detected line.  

Freeway Ramps and Turn Lanes 

When driving in the right-most lane, a vehicle is adjacent to an exit ramp, entrance ramp, or turn lane. 

These features include a mixing area where vehicles are entering or exiting the major roadway that can 

either have a delineation marking the major roadway edge or no marking. When vehicle automation 

relies on striping to the left and right of the travel path, this lack of striping may cause a misdetection, 

potentially causing the vehicle to follow an incorrect path despite driver and route intentions. Figure 14 

and Figure 15 show desirable and undesirable vehicle paths on entrance and exit ramp configurations to 

illustrate this issue. 
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Figure 14 - Entrance Ramp Diagram (Undesirable Vehicle Path on Left, Desired Vehicle Path on Right) 

 

Figure 15 - Exit Ramp Diagram (Undesirable Vehicle Path on Left, Desired Vehicle Path on Right) 
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Figure 16 - Misdetection of Lane Due to Unstriped Diverge Area 

 

Figure 17 - Proper Detection of Lane Due to Dotted Line Placement 

As seen in Figure 16, the unmarked area between the right driving lane and the turn lane causes the 
sensor to assume the driving lane continues into what is actually the turn lane (the red line). Figure 17 
shows how the continuous marking leads to the proper delineation of a turn lane which allows the 
sensor to distinguish the edge of the current driving lane (red) and the edge of the turn lane (purple).  
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Poor Lane Line Condition and Visibility  

Similar to a lack of right edge striping in the driving lane for an exit ramp or turn lane, improper or 

insufficient centerline markings may cause a misdetection that could lead to incorrect automated 

vehicle horizontal control. 

 

Figure 18 - Example of Poor Lane Line Visibility 

Various conditions may contribute to poor centerline visibility on the roadway. Deteriorating pavement, 

chipped or faded markings, or pavement repairs can make it difficult for the vehicle’s equipment to 

properly place the edge line, as seen in Figure 18. Therefore, the system believes the outside edge of the 

driving lane is the edge of the opposite direction’s lane (green). This could cause the vehicle to veer into 

the oncoming driving lane while centering itself in its intended driving lane. 
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Figure 19 - Fresh Markings Increases Centerline Visibility 

As illustrated in Figure 19, the contrast and quality of pavement materials and markings make it easier 

for the system to determine both the centerline and edge lines to keep the vehicle in the proper center 

of lane. 

Construction and Maintenance Activities 

Pavement scarring, pavement cracks and joints, or rumble strips may cause misdetection. These 

instances were more prominent when there were lane reductions or shifts on a roadway due to past or 

current construction.  

Figure 20 and Figure 21 show construction zones on multilane highways. In both cases, there are 

misdetections due to existing markings on the roadways from prior maintenance, masked existing 

markings, or tire marks.  
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Figure 20 - Misdetection Due to Crack Seal 

 

Figure 21 - Pavement Scarring/Tire Mark Causes Misdetection 
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Figure 22 shows a proper identification of lane markings in a construction zone even though the 

previous lane marking scar is distinguishable to a human eye. Because the pavement was removed 

completely and the new marking is more contrasted to the pavement, the system can correctly identify 

the proper lane marking.  

  

Figure 22 - Proper Identification of Lane Marker in Construction Zone 

The sample size for construction work zones was small compared to the route in total, and the examples 

shown illustrate the potential variability of response in these types of scenarios due to the many factors 

that could be at play. Certain factors such as pavement type and condition as well as marking color and 

width appear to affect how a system may identify lanes when there are competing lines like scars or 

crack seals. It is possible that the system could not identify the left lane marking in Figure 21 due to the 

yellow color, versus properly identifying a wider white temporary marking shown in Figure 22 with 

higher contrast. 

Poor Contrast 

Poor contrast generally occurs on roadways with light colored pavement in comparison to light colored 

pavement markings. Figure 23 shows an instance of poor contrast where the left edge line is not being 

identified. While the centerline is identified, it may be largely due to the presence of a crack seal versus 

the actual pavement marking that by human eye does not stand out. Figure 24 shows an example of 

high contrast markings that can positively impact the vehicle’s ability to properly identify markings even 

on light colored pavement. The white striping is clearly visible to the system.  
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Figure 23 - Poor Contrast between Pavement and 

Striping Contributes to Difficulty Identifying Lane 

 

Figure 24 - Higher Contrast Increases Visibility 

Tight Curvature 

In some cases, the horizontal curvature of the roadway was too tight for the system to properly fit lane 

lines, potentially causing misdetections or poor performance. Figure 25 shows an example of this. These 

situations may be unavoidable from a design perspective given the context of many roadways, meaning 

either more sophisticated/fine-tuned algorithms are needed or high-definition mapping would be 

required for smooth performance. Most automated driving functions on the market today do not work 

well in tight curvature situations for the following reasons:  

• Camera may not have a wide field of view 

• The algorithms are optimized for highway lane keep assist or autopilot applications  

 

Figure 25 - Example of Tight Curvature Causing Poor Performance 
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Environmental Issues 

4.2.6.1 Extreme Shadowing 

Figure 26 shows how the blocks of sun and shadows create inconsistent lane marking contrast for the 

system to utilize. The image shows that the lane line is identifiable for approximately 10-20 feet but 

once it reaches the block of extreme shadow, it cannot identify the center lane line anymore. Figure 27 

shows how bright sun coming out of a shaded area washes out the image and leads to an inability to 

detect the center lane marking. Jagged and flickering dark shadows appear to have the most negative 

impact on system performance. Similar to human eyes, the vision systems are able to perform well in 

shaded conditions that are more consistent or have smoother transitions from light to dark.  

 

Figure 26 - Blocks of Sun and Shadows Cause Misdetection of Lane Markers 

 

Figure 27 - Especially Sunny Area Makes Marking Indistinguishable 
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4.2.6.2 Fog 

One instance of fog was experienced during the drive. As shown in Figure 28, it was dense enough to 

cause detection issues on an exit ramp. The frame of video used shows only right edge line partial 

detection, although on the majority of other frames neither edge line was detected.  

 

Figure 28 - Poor Sensor Performance in Fog 

Dynamic Lanes 

A unique feature in Minnesota is the MnDOT MnROAD facility on I-94 between Albertville and 

Monticello. There are lane markings leading to both roadways, though only one is ever open at a time. 

Human drivers can distinguish between the path they need to take by using the overhead signals as well 

as road barriers. However, an automated vehicle may not have the capability to distinguish or choose. 

The vehicle responded and connected with the lanes as shown in Figure 29, which may incorrectly cause 

the vehicle to attempt to take the rightmost lane. This situation could also arise on other highway 

splits/merges or in other areas with dynamic lanes and shoulder uses. The behavior demonstrated in 

Figure 29 may cause an unintended exit or crash depending on other traffic in the area. 

 

Figure 29 - MnROAD Lane Closures May Cause Misdetection 
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 TIES TO EXISTING TRAFFIC ENGINEERING STANDARDS 

The Minnesota Traffic Engineering Manual (TEM) and the Minnesota Manual on Uniform Traffic Control 

Devices (MnMUTCD) have specific guidelines and procedures for pavement markings. These are 

frequently used documents by practitioners that influence how Minnesota roadways look and feel. 

Guidance and standards exist for many facets of traffic engineering, including several areas that 

specifically correlate to the findings from this drive. These manuals will likely be updated after the 

planned release of the Federal MUTCD expected in 2023. The Notice of Proposed Amendments (NPA) 

for the 11th Edition of the MUTCD contains Part 5: Automated Vehicles which provides guidance for 

different traffic control devices that may impact automated driving safety and performance. In addition 

to the sources listed in the following sections, MnDOT’s Technical Memorandum 22-01-T-01 includes 

statewide guidance on marking life expectancy, wet reflectivity, skid resistance, and alternative practices 

and installations.11 

5.1 HIGH CONTRAST MARKINGS 

The MnMUTCD allows the use of black marking when used in conjunction with white markings where 

“light colored pavement does not provide sufficient contrast with the markings” (MnMUTCD 3A.5). 

There is no specific measure provided for when contrast markings should be used and therefore is left to 

engineering judgment. In practice, this is generally interpreted to be referencing white markings on 

concrete pavements. There are ongoing studies that aim to provide conclusions and guidance on 

markings: Assessing Pavement Markings for Automated Vehicle Readiness12 and Human Factors - 

Pavement Marking Cycle Lengths and Widths13 

5.2 RETRO REFLECTIVITY AND WET REFLECTIVE MARKINGS 

The MnMUTCD includes the following language regarding retro reflectivity. “Markings that must be 

visible at night shall be retroreflective unless ambient illumination assures that the markings are 

adequately visible. All markings on Interstate highways shall be retroreflective.” Given recent FHWA 

rulemaking regarding minimum standards (87 FR 47921), the MnMUTCD will likely be updated to 

provide additional information. 

The Minnesota TEM states that pavement markings that have reached a minimum performance level for 

retro reflectivity must be scheduled for replacement (Mn TEM 7-4.01.02). The TEM also provides a 

recommendation that any pavement markings installed on pavement expected to last more than three 

years should be wet reflective (Mn TEM 7-4.01.03).  

  

 

11 https://edocs-public.dot.state.mn.us/edocs_public/DMResultSet/download?docId=15654703 
12https://researchprojects.dot.state.mn.us/projectpages/pages/projectDetails.jsf?id=23861&type=CONTRACT&jftfdi=&jffi=projectDetails%3Fid
%3D23861%26type%3DCONTRACT 
13https://researchprojects.dot.state.mn.us/projectpages/pages/projectDetails.jsf?id=22013&type=CONTRACT&jftfdi=&jffi=projectDetails%3Fid
%3D22013%26type%3DCONTRACT 

https://edocs-public.dot.state.mn.us/edocs_public/DMResultSet/download?docId=15654703
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5.3 TEMPORARY MARKINGS AND REMOVAL OF MARKINGS  

Section 7-4.05 of the TEM states that markings that are no longer applicable or that may cause 

confusion shall be removed or obliterated to be unidentifiable as soon as practical. Additionally, removal 

techniques that may leave pavement scars may confuse drivers. This applies to certain items seen on 

the road in construction zones and discussed in Section 4.2.3 . 

5.4 DOTTED LINE MARKINGS 

Line width and pattern guidance for markings within a turn lane or ramp taper can be found in the TEM 

Section 3A.6 as well as the MnMUTCD Section 3B.4. These dotted lines are shorter and closer together 

than broken lines. While section 3B-20 generally suggests that dotted lines are optional, MnDOT 

generally has adopted a practice of using dotted lines as a default option. They are distinguishable from 

regular lane delineation. See Figure 30 for an example. 

 

Figure 30 – Examples of MnMUTCD Guidance on Dotted Extension for Ramps and Turn Lanes, MUTCD Figure 3B-

11 (left) and Figure 3B-8 (right) 
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 CONCLUSION 

While many different situations were identified based on the data processed from the drive, the 

following key categories were more prevalent than others: 

• Freeway Ramps and Turn Lanes – Misdetections caused by lack of continuous edge line 

guidance 

• Poor Lane Line Condition and Visibility – Misdetections caused by lack of lane lines or poor 

condition of lane lines 

• Construction Zones or Maintenance Activities – Misdetections caused in approaches to work 

zones or along areas of roadway with scarring, ghost markings, or solid lines from crack sealer.  

• Poor Contrast – Misdetections typically caused by lighter colored pavement with faded/white 

pavement markings.  

The items discussed in this report are meant to outline potentially common occurrences on Minnesota 

roadways based on the sample that was driven for this project. There are many next steps that could 

occur following this project to continue learning and make meaningful changes to both the 

infrastructure and standards/policies influencing the readiness of Minnesota roadways for vehicle 

automation, some of which are outlined below. 

1. Share findings of this project with key decision makers at the state, county, and city levels of 

government. Key groups may include MnDOT Traffic Engineering Organization (TEO), City 

Engineers Associate of Minnesota (CEAM), and Minnesota County Engineers Associate (MCEA) 

among others. 

2. Use the forthcoming Federal MUTCD update, particularly the proposed Part 5 – Automated 

Vehicles, to further conversations in Minnesota about what should be incorporated into the 

MnMUTCD. 

3. Consider detailed evaluation of key corridors or groupings of roadways in advance of 

programmed projects to ensure roadway suitability for vehicle automation. While findings from 

this work may capture a significant portion of potential issues on other roadways in the state, 

specific site conditions (horizontal and vertical curvature, roadside elements such as trees, 

pavement condition, pavement marking condition, day vs. night performance, etc.) all play a 

factor in how suitable a certain segment of roadway may be. 

The findings from this study, combined with the anticipated additional guidance in the Federal MUTCD 

on automated vehicles and the multitude of CAV testing events in the state are contributing to a greater 

understanding of how ready Minnesota roadways are for vehicle automation.  
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APPENDIX A: ROUTE MAPS 

 

 

 



















 

APPENDIX B: FREQUENTLY ASKED QUESTIONS FROM EVENTS 

Q: HOW DID THE VEHICLE HANDLE “X” SITUATION ON THE ROADWAY?  

A: The vehicle is solely for data collection purposes driven solely by humans and does not react 

or respond in an automated manner.  

Q: HOW CAN LOCAL JURISDICTIONS BE MORE AWARE OF CAV STANDARDS AND READINESS 

PRACTICES IN MINNESOTA? 

A: Focus on projects that provide transportation value both today and in the future. One 

example is maintaining standardized pavement markings. For more ideas, LRRB’s CAV 

interactive FAQ resource website was developed targeted for locals and has information. 

Q: WHY ARE WE DOING DRIVE MN NOW? 

A: We want to discover and learn- both from the roads and local authorities. Vehicle automation 

is on our roads today with capabilities like lane keep assist and adaptive cruise control. National 

traffic engineering standards are in the process of being updated as well, with elements 

specifically noted with respect CAV for pavement markings, signing, traffic signals, and 

construction work zones.  

Q: WHEN WILL CONNECTED AND AUTOMATED VEHICLES BE AVAILABLE?  

A: Now. Basic levels of connected and automated vehicle technology are on Minnesota 

roadways today. However, vehicles that are fully automated, in all settings, are still many years 

away. 

Q: WHAT IS THE CAV CHALLENGE AND HOW MUCH MONEY IS AVAILABLE FOR CAV TESTING?  

A: It’s an open-call funding program focused on spurring innovation and creativity from 

proposers to advance planning and preparing for CAV in Minnesota. Around $2 million is 

available annually. 

 


