Roadway Improvement Project
Cost Allocation

CTS 21st Annual
Transportation
Research Conference

April 27, 2010
Potential Applications
Potential Applications

- Alternative Urban Areawide Reviews
- Subarea Studies
- Roadway Project Feasibility Studies
- Land Use Plans
- Corridor Studies
- Visioning Studies
- Site Specific Development Applications
- ETC, ETC, ETC…
Potential Applications

- Alternative Urban Areawide Reviews
 - Large area of land identified for development/redevelopment
 - Organized land use planning and identification of the transportation impacts
 - Varying impacts
 - Determine which parcels have the potential for greater roadway impact
 - Proportionately allocate improvement costs
Potential Applications

- Roadway Project Feasibility Studies
 - Identified potential roadway infrastructure improvement
 - Documentation of estimated project costs
 - Determine property assessments and appropriate cost allocation
 - Recommend feasibility
Potential Applications

- Site Specific Development Applications
 - Project site identified for development/redevelopment
 - Determine applicable adjacent roadway impacts and necessary improvements
 - Outline proportional impacts associated with the proposed development, adjacent existing development and external sources
Roadway Improvement Overview
Roadway Improvement Determination

- Highlight future infrastructure needs through forecast horizon year (one year after construction, 5 years, 20 years, etc.)
- Review potential land use scenarios
- Determine adjacent roadway impacts and mitigation measures related to potential land use types using vehicular trip generation
- Determine the costs associated with the infrastructure needs
Roadway Improvements

• Outline roadway improvements for documentation purposes
Roadway Improvement Concepts

- Concept sketches can be prepared for each of the infrastructure improvements
- Utilize aerial photos to tie-in landmarks and graphically depict impacts
- Consider existing right-of-way and parcel data
- Develop preliminary and/or final design plans
Roadway Improvement Concepts

CONCEPT
SUBJECT TO CHANGE
1/14/2006

CONSTRUCTION OF THIS IMPROVEMENT
CONSTRUCTION - SEE OTHER IMPROVEMENT

LEGEND

IMPROVEMENT 16: FAIRVIEW AVENUE at COUNTY ROAD X and COUNTY ROAD Z
Convert Fairview Avenue to a two-lane section between County Road X and County Road Z with a continuos
center turn lane.

IMPROVEMENT 16 (1 of 2)
Twin Lakes Infrastructure Improvements
City of Roselle

Figure 18A
Roadway Improvement Concepts
Roadway Improvement Cost Estimate

- Cost estimates can be developed based on concept sketches
- Based on lateral impacts only (two dimensional), do not account for large topography changes (concept costs)
- Quantities are based on major construction components (10-percent contingency cost added to account for miscellaneous)
- Cost estimates for preliminary and/or final designs are more accurate and include cut/fill calculations
Roadway Improvement
Cost Allocation
Roadway Improvement Cost Allocation

- All costs are allocated based on vehicular trip contributions for each parcel/development/redevelopment
- Future improvement costs are allocated proportionately to the appropriate parcels/developments/redevelopments
- A proportional share of the costs are assigned to background traffic (City/County/State responsibility)
 - Future developments/redevelopments use available excess capacity, existing developments use a percentage of its initial capacity contributing to the capacity constraints and subsequent need for improvements.
Roadway Improvement Cost Allocation

- Definition of “cost per network trip” is represented by the graphic shown below.
Roadway Improvement Cost Allocation

- Determine an average cost per network trip based on land use type (i.e., commercial, industrial, residential, mixed use, etc.) and location (proximity to improvements)
- As land use develops in the area the resultant cost per network trip values can be used as a guideline to determine future parcel/development/redevelopment proportional costs
Roadway Improvement Cost Allocation

- No change will be needed to the proportional cost if land use type and size are the same under future conditions.
- If land use type and size are different when the parcel develops, then:
 - Need to calculate new network trip total
 - Review associated roadway impacts and additional improvement needs.
Roadway Improvement Cost Allocation

2030 Weekday PM Peak Hour - Cost Allocation per Network Trip based on proposed Use

<table>
<thead>
<tr>
<th>Sub Area</th>
<th>Block</th>
<th>Proposed Land Use</th>
<th>Scenario C</th>
<th>Average Cost per Network Trip based on Land Use and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Network Trips</td>
<td>Total Cost Allocation</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>Commercial - Office</td>
<td>2076</td>
<td>$2,610,040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential</td>
<td>110</td>
<td>$100,001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Commercial - Office</td>
<td>2496</td>
<td>$3,387,536</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential</td>
<td>72</td>
<td>$130,497</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Commercial - Retail</td>
<td>436</td>
<td>$593,003</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Commercial - Retail</td>
<td>2247</td>
<td>$3,414,342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercial - Office</td>
<td>276</td>
<td>$280,449</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Commercial - Office</td>
<td>395</td>
<td>$735,883</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Commercial - Office</td>
<td>118</td>
<td>$221,995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential</td>
<td>42</td>
<td>$137,375</td>
</tr>
</tbody>
</table>

II	6	Commercial - Office	77	$101,154	$1,314
	7	Commercial - Office	68	$88,407	$1,290
		Commercial - Retail	144	$1,449,876	$1,257
	9	Commercial - Office	942	$633,500	$1,208
	10	Residential	424	$649,080	$1,531

III	11	Residential - Already approved	N/A	N/A	N/A
	12	Commercial - Office	1677	$1,203,075	$1,139
		Residential	205	$229,704	$1,124

| N/A | N/A | Year 2000 Background Traffic | 49,520 | $4,340,557 | $867 |
| N/A | N/A | Northwestern College | 408 | $195,680 | $480 |

Total | 3161 | $22,782,364 |
Roadway Improvement Cost Allocation

<table>
<thead>
<tr>
<th>Sub Area</th>
<th>Block</th>
<th>Proposed Land Use</th>
<th>SCENARIO C</th>
<th>AVERAGE COST PER NETWORK TRIP BASED ON LAND USE AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Network Trips</td>
<td>Total Cost Allocation</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>Commercial - Office</td>
<td>2876</td>
<td>$3,610,948</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential</td>
<td>138</td>
<td>$186,091</td>
</tr>
</tbody>
</table>

- **Network Trips** = sum of this developments vehicular trips that pass through intersections/segments requiring improvements
- **Total Cost Allocation** = this developments total cost proportion based on its network impacts
- **Average Cost per Network Trip** = Total Cost Allocation ÷ Network Trips
Presentation Summary

- Numerous land use planning applications
- Vehicular trip forecasts
- Identify roadway impacts
- Minimum conceptual design and costs
- Determine cost per network trip values for each development area
Questions...

Craig Vaughn, P.E., PTOE
SRF Consulting Group, Inc.
763–249–6774
cvaughn@srfconsulting.com