Effects of Implements of Husbandry on Pavement Performance

Lev Khazanovich, PhD
Jason Lim
University of Minnesota

Shongtao Dai, PhD, PE
Office of Materials
Minnesota Department of Transportation
CTS Conference
April 27, 2010
Acknowledgement

- Professional Nutrient Applicators Association of Wisconsin and Minnesota.
- Iowa DOT
- IL DOT
- MN Local Road Research Board
- Wis. DOT
A pooled fund study

- **participants:**
 - IL DOT
 - Industries Represented by Professional Nutrient Applicators Association of Wisconsin (PNAAW)
 - Iowa DOT
 - Minnesota Local Road Research Board (LRRB)
 - MnDOT
 - Wis. DOT

- **Private Industry:**
 - PNAAW
 - John Deere, CaseIH, AgCo,
 - Houle Farm Equipment
 - Husky Farm Equipment
 - Minnesota, Iowa, Ohio, Michigan, Manure Applicators Associations
 - Michelin, Firestone/Bridgestone

- PIs: Univ. of MN; Iowa state Univ.
Major Objectives

- Determine pavement responses to selected agricultural equipment using instrumented pavements.
- Compare pavement response to typical 5-axle semi.
Research Approach

Cell 84 at MnROAD
- 5.5” HMA with PG58-34
- 9” gravel aggregate base
- A-4 subgrade soil

Cell 83 at MnROAD
- 3.5” HMA with PG58-34
- 8” gravel aggregate base
- A-4 subgrade soil
Existing PCC section 54
- 7.5” PCC
- 12” aggregate base

Existing PCC section 32
- 5.5” PCC
- 12” aggregate base
Instrumentation of Test Sections

- Strain gauges: bottom of HMA (18 per section)
- Pressure in base (6 per section)
- LVDTs (3 per section)
- Base moisture measurement: TDR & ECH20 (8 per section)
- Thermocouples (32 in cell 83; 16 in cell 84)
Project Status

- A 3 year project
 - 2 weeks testing in each spring
 - 2 weeks testing in each fall
 - The 1st Spring test – Mar., 08
 - The 1st Fall test – Aug., 08
 - The 2nd Spring test – Mar.16, 09
 - The 2nd Fall test – Aug. 09
 - The 3rd Spring test – Mar. 10
S1: 4400 gal
S2: 4400 gal
S3: 1800 gal
T1: 6000 gal

T2: 4000 gal

T3: 6000 gal
T4: 7300 gal
T5: 9500 gal
R4: 2400 gal
MN: 80,000 LB

MN: 102,000 LB
Axle Weight and Contact Pressure Measured
Test Configuration

- 4 different weights: 0%; 25%; 50%; 80%; 100%
- 3 different speeds: Creep; 5 mph; 10 mph, 20mph
- Offset: 0 and 12 inches
<table>
<thead>
<tr>
<th></th>
<th>Terragon (R4)</th>
<th></th>
<th>empty</th>
<th>25%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FR</td>
<td>13700</td>
<td>13760</td>
<td>14440</td>
<td>7900</td>
</tr>
<tr>
<td>FL</td>
<td></td>
<td>7040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ax tot</td>
<td></td>
<td>13700</td>
<td>13760</td>
<td>14440</td>
<td>14940</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLO</td>
<td>5280</td>
<td>5740</td>
<td>6120</td>
<td>11140</td>
</tr>
<tr>
<td>RLI</td>
<td></td>
<td>6540</td>
<td>8140</td>
<td>9300</td>
<td>9580</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11820</td>
<td>13880</td>
<td>15420</td>
<td>20720</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRO</td>
<td>6800</td>
<td>7240</td>
<td>8660</td>
<td>8560</td>
</tr>
<tr>
<td>RRI</td>
<td></td>
<td>5220</td>
<td>7520</td>
<td>8740</td>
<td>9140</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12020</td>
<td>14760</td>
<td>17400</td>
<td>17700</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FA</td>
<td>13700</td>
<td>13760</td>
<td>14440</td>
<td>14940</td>
</tr>
<tr>
<td>RA</td>
<td></td>
<td>23840</td>
<td>28640</td>
<td>32820</td>
<td>38420</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTW</td>
<td>37540</td>
<td>42400</td>
<td>47260</td>
<td>53360</td>
</tr>
<tr>
<td>tank total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GVW</td>
<td>37540</td>
<td>42400</td>
<td>47260</td>
<td>53360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>485 steiger with 9500 (T5)</th>
<th></th>
<th>empty</th>
<th>25%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FRO</td>
<td>5520</td>
<td>5400</td>
<td>5540</td>
<td></td>
</tr>
<tr>
<td>FRI</td>
<td></td>
<td>7380</td>
<td>7040</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLO</td>
<td>6060</td>
<td>5700</td>
<td>5680</td>
<td></td>
</tr>
<tr>
<td>FRI</td>
<td></td>
<td>7520</td>
<td>7480</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axle Total</td>
<td>26480</td>
<td>25620</td>
<td>25200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLO</td>
<td>5840</td>
<td>7020</td>
<td>8300</td>
<td></td>
</tr>
<tr>
<td>RLI</td>
<td></td>
<td>8160</td>
<td>8420</td>
<td>8200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14000</td>
<td>15440</td>
<td>16500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRO</td>
<td>5850</td>
<td>7400</td>
<td>8340</td>
<td></td>
</tr>
<tr>
<td>RRI</td>
<td></td>
<td>7100</td>
<td>7380</td>
<td>9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12950</td>
<td>14780</td>
<td>18040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FA</td>
<td>26480</td>
<td>25620</td>
<td>25200</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td></td>
<td>26950</td>
<td>30220</td>
<td>34540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTW</td>
<td>53430</td>
<td>55840</td>
<td>59740</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>empty</th>
<th>25%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1L</td>
<td>3060</td>
<td>4650</td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>TA1R</td>
<td>3060</td>
<td>5020</td>
<td>9740</td>
<td></td>
</tr>
<tr>
<td>TA2L</td>
<td>3040</td>
<td>5420</td>
<td>9880</td>
<td></td>
</tr>
<tr>
<td>TA2R</td>
<td>3100</td>
<td>5240</td>
<td>10480</td>
<td></td>
</tr>
<tr>
<td>TA3L</td>
<td>3100</td>
<td>5220</td>
<td>10160</td>
<td></td>
</tr>
<tr>
<td>TA3R</td>
<td>2980</td>
<td>5160</td>
<td>10060</td>
<td></td>
</tr>
<tr>
<td>TA4L</td>
<td>3300</td>
<td>5400</td>
<td>10160</td>
<td></td>
</tr>
<tr>
<td>TA4R</td>
<td>3220</td>
<td>5000</td>
<td>10060</td>
<td></td>
</tr>
<tr>
<td>tank total</td>
<td>24860</td>
<td>41110</td>
<td>79040</td>
<td>138780</td>
</tr>
</tbody>
</table>
Failure

- Cell 83 (Spring 09)
- Cell 32 (Spring 09)
- Cell 83 (Fall 09)
Wheel Offset
Preliminary Example Analysis

S5 Subgrade Stress (83PG4) Spring 09

[Graph showing test results with labels for 25%, 50%, and 80%]

[Diagram showing locations TE004, TE005, and TE006 with a 12 in offset]

[Image of a blue tanker truck]
Fall vs. Spring Maximum AC Strains
Fall vs. Spring Maximum Subgrade Stresses

Subgrade Stress (83PG4) 80%

- Mn80
- R4
- T6
- T7

[Bar chart showing comparison between Fall and Spring subgrade stresses for different vehicles]
Comparison of Subgrade Stresses

Subgrade Stresses (83PG4) 80%

Mn80 max subgrade stress at Cell 84 (80%)
Comparison of AC Strains

AC Strain (83AE4) 80%

Vehicles

- Mn80
- R4
- R5
- S4
- S5
- T6
- T7
- T8

[Graph showing comparison of AC Strains]
The analysis is very preliminary and does not represent any conclusion.
Thank you