Developing a Large Scale Hybrid Simulation Model of the Minneapolis Metropolitan Area

Derek Lehrke
Minnesota Traffic Observatory, University of Minnesota
26th Annual Transportation Research Conference, May 20th, 2015
Overview

- Objectives
- Methodology
 - Geometry
 - Demand
 - Control
 - Calibration
- Lessons Learned
- Conclusions
Project Objectives

2. Introduce dynamic components in the Regional Planning Model (RPM) Mode Choice step.

- Use it to evaluate impact on the network from the implementation of the Green line LRT.
Methodology

- Build a multi-resolution traffic simulation model of the Twin Cities metropolitan network or a large part of it.
 - High resolution (Microscopic) representation of the two LRT corridors and surrounding roadways
 - Medium (Mesoscopic) resolution on rest of region
 - Utilize equilibrium based DTA to represent stable but dynamic route choice behavior
Methodology: Multilevel Hybrid Simulation

- **Static Traffic Assignment (Macro)**
 - Replicate RPM results
 - Generate best guess static routes
- **Utilize entire network to run a Hybrid Dynamic User Equilibrium simulation**
 - Study area is microscopic
 - Border of study area is mesoscopic-fine
 - Greater network is mesoscopic-rough
- **Lessons learned:**
 - Having all levels under the same application greatly reduces build effort and duplication
 - Need to upgrade to a multiuser environment so modelers can work in parallel.
Introduce dynamic components in the RPM Mode Choice step.

Step A: CUBE Iterations

1. Trip Generation
 - Census data
 - Socio-economic data
 # of trips desired from each centroid

2. Trip Distribution
 - Job data
 - Gravity model
 # of trips from/to all centroid pairs

3. Mode Choice
 - Census data
 - Socio-economic data
 - Transit network/schedules
 # of trips per O/D per mode

4. Traffic Assignment
 - Macroscopic
 - Static Traffic Assignment

5. Traffic Assignment
 - Hybrid (Micro/Meso)
 - Dynamic User Equilibrium

Step A – Use Cube four-step model to converge to a stable macroscopic traffic assignment by iterating 1-4.

Step B – Use Aimsun Hybrid DUE to loop with Cube step 3 to refine mode choice.

Replace the Traffic Assignment step in the RPM and form a loop with the Mode Choice step.

LL: Make sure there is a formed relationship between the two models before you start building them.
Geometry: Entire Network

- 24 Hour Demand
 - 9,126,634 Total Trips
- 1630 Centroids
- 28,500 Individual Sections
- 10,500 Nodes
Lesson learned:
Sometimes too much detail is not a good thing. Neighborhood streets did not offer much utility and increased routing calibration effort.
Demand

- Demand generated by the RPM
 - 3 vehicle matrices for each demand interval (72 total)
 - SOV, HOV, Truck
 - LRT lines simulated based on schedules
 - Combined Multiple RPM demand intervals to form peak period demands
 - AM Peak (6:00am – 8:30am)
 - PM Peak (3:30pm – 6:00pm)
Demand Segmentation

Original and Adjusted Demand - 6:00 AM to 10:30 AM

Entrance Volume (Vehicles per 15-minutes)

Interval Start Time

6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15
Traffic Control

- 798 signals in Hybrid Network
 - 3 Time periods (AM, PM, Off-Peak)

- Light Rail Control
 - 11+ preemption
 - Full interruption of signal and immediately advancing to the LRT movement. LRT does not have to stop
 - 40+ Actuated LRT phase (Transit Signal Priority)
 - Reduces phases before LRT movement to minimum green time. LRT may come to a complete stop at the intersection
 - Skip left turn phase if no vehicle present
 - Signal timings constantly adjusted

- Lesson learned: Need to organize traffic control information and promote a unified, electronic format. No PDFs!
Real Data for calibration

- MnDOT Freeway detector counts/speeds/flows
- Turning movement counts
 - Minneapolis from TCMS
 - University Ave from City of Saint Paul Traffic Operations
- Tube counts for CCLRT Corridor
- Data available is concentrated heavily around AM and PM peak hours
- Counts do not agree with each other. Need methodology to make adjustments.
Results: Hybrid model validation

• 7:30am to 8:30am
Implementation of the Hybrid Model

- Evaluate the impact on the network from the implementation of the Green line LRT.
 - Develop two alternatives, before Green line and after Green line
 - Use to evaluate the changes in traffic conditions on surrounding roadways

- Full Report on the impact is available through the CTS website
 - *Evaluating Twin Cities Transitways Performance and their Interaction with Traffic on Neighboring Major Roads*

 [Link](http://www.cts.umn.edu/Publications/ResearchReports/reportdetail.html?id=2410)
Lessons Learned: Sensitivity

- Effect of Mesoscopic model parameters

<table>
<thead>
<tr>
<th></th>
<th>Delay (sec/km)</th>
<th>Speed (km/h)</th>
<th>Travel Time (sec/km)</th>
<th>Mean Queue (veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>64.88</td>
<td>29.99</td>
<td>120.03</td>
<td>164955</td>
</tr>
<tr>
<td>RT up .2 sec</td>
<td>68.41</td>
<td>29.09</td>
<td>123.77</td>
<td>171310</td>
</tr>
<tr>
<td>RT up .4 sec</td>
<td>70.95</td>
<td>28.14</td>
<td>125.81</td>
<td>176650</td>
</tr>
<tr>
<td>RT up .6 sec</td>
<td>74.3</td>
<td>27.68</td>
<td>130.03</td>
<td>182290</td>
</tr>
</tbody>
</table>
Lessons and bugs

- Meso-rough intersection conflicts
- Jam density gridlock
Lessons and bugs

- Long run times make calibration difficult
- Large memory requirements restrict simulation duration

<table>
<thead>
<tr>
<th>Demand Interval</th>
<th>Pre Green Line Network</th>
<th>Green Line Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAM (GB)</td>
<td>Iterations</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00-6:45</td>
<td>17.5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>49.5</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>116.6</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>65.1</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>125.1</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>118.0</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>38.0</td>
<td>16</td>
</tr>
</tbody>
</table>

Multi-Demand						
6-8	291	27	92.2	261	26	86.1
16-18	356	27	114.14	331	25	78.7

- Have a good Database and GIS based container to store and visualize the results. Too big for native programs and traditional methods.
Conclusions

- Large scale simulation is feasible
- Interfacing with Travel Demand Model also feasible
- Requires more work in streamlining calibration
- One must be careful of the software used. All have bugs that are accentuated with network size.
- Process can be institutionalized like the RPM and generate a Dynamic Traffic Assignment Regional Simulation Model
 - Improve resolution with each project
 - Provide model as a cost saving resource
 - Open source paradigm
Questions?

Derek Lehrke
Research Engineer, MTO
T 612-624-8616
E lehr0063@umn.edu

John Hourdos
Director, MTO
T 612-626-5492
F 612-626-7750
E Hourdos@umn.edu

Minnesota Traffic Observatory (MTO)
http://www.mto.umn.edu/