Anchorage of Shear Reinforcement in Prestressed Concrete Bridge Girders

Brian Mathys – RA
Catherine French – PI
Carol Shield – Co-PI
Department of Civil Engineering

CTS 2014 Research Conference 5/21/14

University of Minnesota
Presentation Outline

• Background
• Objective
• Subassemblage Tests
• Girder Tests
• Conclusions
Prestressed Girder Fabrication

Process:
- Girder form is placed in precasting bed
- Tension reinforcing steel strands
- Place stirrups that carry shear forces
- Pour concrete
- Let concrete harden
- Cut the steel anchored to the precasting bed
- Girder becomes “prestressed” and is ready for erection
Loading of PC Girder creates Shear Forces

- Resistance provided by:
 - Transverse reinforcement contribution
 - Concrete contribution

Concrete deck → Girder top flange → Girder web → Girder bottom flange → Prestressing steel → Stirrups

Load must travel to abutment

Abutment
Transverse Reinforcement Contribution

• Tension forces in the stirrups require:
 – Adequate anchorage & development of stirrups in bottom flange where prestressing compression helps.
Construction Practice

• “Straight leg” stirrups used to facilitate construction (past practice)
• Stirrups with “standard hook” considered for new construction
 • Mechanically anchor stirrups around strands
Objectives

• Investigate the effectiveness of straight-legged stirrup anchorage in developing yield
Subassemblage Test Specimens

- Shape (Embedment length)
 - M and MN
 - 7 in. to 9 in. embedment
- Precompression
 - $0.01 \cdot f'_c$ and $0.45 \cdot f'_c$
- Presence or absence of confinement steel
- Concrete strength
 - 6.4 ksi to 9.5 ksi
Full-Scale Girder Tests

- Nominal $f_c' = 7.5$ ksi
- Girder depth
 - 36 in. and 45 in.
- Nominal anchorage length
 - 8 in. anchorage for M shape
 - 6-¾ in. including tolerances
- Flexure-shear vs web-shear
- Stirrup spacing
 - $s = 18$ in. for flexure-shear
 - $s = 8$ or 24 in. for web-shear
Stirrup Spacing

- **Tight Spacing**
 - Group effect reduces anchorage strength

- **Wide Spacing**
 - Fewer stirrups crossed by cracks

Stirrups with limited anchorage resist shear

Greater effecting anchorage likely
Prestressing

- Relatively high number of strands
 - Provides flexural resistance
 - Varying levels of strand stress levels
- Prestress of $0.40 \cdot f'_c$ targeted
 - Achieved $0.23 \cdot f'_c$ in 36M
 - Achieved $0.30 \cdot f'_c$ in 45M
 - Cast on a single bed

Straight Strands:
- $X \cdot 0.1 \cdot f_{pu}$
- $\circ \cdot 0.60 \cdot f_{pu}$
- Debonded

Draped Strands:
- $\square \cdot 0.43 \cdot f_{pu}$
Test Setup

- Flexure-shear test
 - 2 concentrated loads
 - 220-kip actuator at midspan
- Web-shear test
 - 1 concentrated load
 - 600-kip MTS test machine
 - a/d ratio $\approx 2.3 - 2.5$
Instrumentation

- Initial prestressing force
- Prestress losses
- Stirrup strains
Flexure-Shear Test Results

- Flexural cracks occurred at stirrup locations prior to shear cracking
- Yield strains exceeded
- Maximum applied load limited to flexural capacity
Web-Shear Test Results

- Strains exceeding yield measured throughout failure regions
Girder Shear Capacity

- **Shear contribution**
 - \(V_c = \min(V_{cw}, V_{ci}) \)
 - \(V_{cw} = (3.5 \cdot \sqrt{f'_c} + 0.3 \cdot f_{pc}) \cdot b_w \cdot d + V_p \)
 - \(V_{ci} = (0.6 \cdot \sqrt{f'_c} \cdot b_w \cdot d) + V_d + \frac{V_i \cdot M_{cr}}{M_{max}} \)
 - \(V_s = \frac{A_v \cdot f_y \cdot d}{s} \)
 - Assumes 45 degree crack
 - \(V_n = V_c + V_s \)

- **Applied shear determined at critical section using statics**
 - Location of expected failure initiation
 - \(h/2 \) for web-shear
Shear Distribution at Failure

36M – Flexure-shear test

108 kip

216 kip
Shear Distribution at Failure

45M – Web-shear test w/ 24 in. spacing
Shear Distribution at Failure

45M – Web-shear test w/ 8 in. spacing
Shear Distribution at Failure

36M – Web-shear test w/ 8 in. spacing
Girder Capacities

- Nominal shear capacities exceeded at critical section

<table>
<thead>
<tr>
<th>Test Specimen</th>
<th>(V_{\text{max,test}}) [kip]</th>
<th>(V_n) [kip]</th>
<th>(V_{\text{max}}/V_n)</th>
<th>(V_{\text{cw,test}}) [kip]</th>
<th>(V_{\text{cw}} @ h/2) [kip]</th>
<th>(V_{\text{cw,test}}/V_{\text{cw}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>36M_18F</td>
<td>174</td>
<td>141</td>
<td>1.23</td>
<td>112</td>
<td>102</td>
<td>1.09</td>
</tr>
<tr>
<td>45M_24W</td>
<td>259</td>
<td>188</td>
<td>1.38</td>
<td>166</td>
<td>139</td>
<td>1.20</td>
</tr>
<tr>
<td>45M_8W</td>
<td>343</td>
<td>288</td>
<td>1.19</td>
<td>162</td>
<td>140</td>
<td>1.16</td>
</tr>
<tr>
<td>36M_8W</td>
<td>311</td>
<td>230</td>
<td>1.35</td>
<td>114</td>
<td>104</td>
<td>1.09</td>
</tr>
</tbody>
</table>
Girder Test Conclusions

• Stirrups yielded in all four static shear tests
 – All three web-shear cases (45M_24W, 45M_8W, 36M_8W) and flexure-shear case (36M_18F)

• Anchorage depth
 – Reduced anchorage depth did not inhibit ability to develop yield strains

• Shear capacity
 – Nominal shear capacity exceeded by applied shear in each test by an average of 1.29
Acknowledgements

• Staff
 – Paul Bergson, Catherine French, Rachel Gaulke, Jane Govro, Carol Shield

• Graduate Students
 – Braden Cyr, Ben Dymond, Brock Hedgard, Kyle Hoegh, Ken Ito, Cat Johnson, Dan Morten, Sam Paitich, Tanner Swenson, Meagan Young

• Research Assistants
 – Spencer Borchardt, Giovanni Dellwo, Anna Flintrop, Jake Jeanquart, Melynda Jensen, Sam Konieczny, Veronica Kubicek, Mike Larson, Andrew Morgan, Mac Parris, Charles Vermace
Questions?