ADA Retrofit and Construction Management
Richfield, MN
Breckenridge, MN
Introduction & Outline

§ Liz Finnegan
Civil Engineer
City of Richfield

§ Tim Lamkin
Project Engineer
HR Green, Inc

§ Detailed Design vs. Construction

§ Case Studies

§ City of Richfield’s Transition Plan
How Detailed Should the Design Be?

§ Note on Plans “Install Pedestrian Ramp Here”

§ Intersection Detail that details every joint to the hundredth of a foot.

§ Something in the middle

KEYNOTES:

1. CONSTRUCT CONCRETE PEDESTRIAN RAMP. SEE ROAD DETAILS. INCLUDE TRUNCATED DOMES, TYPICAL ON ALL ROAD DESIGN PLAN & PROFILE DRAWINGS.
How Detailed Should the Design Be?

- MnDOT Standard Plans
 - Defines types of pedestrian ramps
 - Design details are given in ranges
Case Studies

§ Breckenridge, MN
 § T.H. 75 Mill & Overlay

§ Richfield, MN
 § 75th/76th Street Reconstruction
 § Pavement Management Program
Case Study
Breckenridge, MN

§ Small budget, part of a mill/overly project

§ Field visit with survey & engineer

§ Only survey “tough” intersections

§ Smart level & tape measure for “easy” intersections
Case Study
Breckenridge, MN
Case Study
Breckenridge, MN
Case Study
Breckenridge, MN

NOTES:
- STOP - 15 ft. GAP (104-00)
- TH/WM DIRECTIONAL RAMP 181.5 ft. APPROXIMATEALLY 15' 10" WIDE
- TEMP: 21.5 ft. PAVED - 162.5 ft. TOTAL = 184 ft.
- REMOVE (6 x 4.5) + (6 x 3) + (12 x 4) + (12 x 3) = 246 ft.

NOTES:
- TWO-WAY DIRECTIONAL RAMP
- REMOVE SIDEWALK = 191 SF
- REMOVE BIT PAVEMENT = 50 SF
- R/R 25 LF OF CURB
Case Study
Breckenridge, MN

§ Construction Plans

§ Intersection Details for “tough” intersections

§ Intersection Tabulations for “easy” intersections
 § Include MnDOT Standard Plans
Case Study
Breckenridge, MN
Case Study
Breckenridge, MN
Case Study
Breckenridge, MN

NOTES:

① 2.5% CROSS SLOPE. EXISTING DRIVEWAY WILL GOVERN LONGITUDINAL SLOPE.

② RUNNING SLOPE SHALL BE ≤ 8.3% AND CROSS SLOPE SHALL BE ≤ 2.0%

③ CONSTRUCT 4' X 4' MINIMUM LANDING AREAS AT A MAXIMUM SLOPE OF 2.0% IN ANY DIRECTION.

④ RUNNING SLOPE SHALL BE ≤ 5.0% AND CROSS SLOPE SHALL BE ≤ 2.0%. IF SLOPE GREATER THAN 5.0%, CONSTRUCT 4' X 4' LANDING.

⑤ EXISTING CONCRETE WALK HAS A RUNNING SLOPE ≤ 2.0% AND CROSS SLOPE ≤ 2.0% AND WILL SERVE AS A 4' X 4' LANDING.
Case Study
Breckenridge, MN

Table: Ramps

<table>
<thead>
<tr>
<th>Intersections</th>
<th>Offset</th>
<th>Left</th>
<th>Right</th>
<th>Top</th>
<th>Bottom</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>SE</td>
<td>963</td>
<td>140</td>
<td>66</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>NW</td>
<td>50</td>
<td>91</td>
<td>132</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>SW</td>
<td>104</td>
<td>71</td>
<td>95</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>NE</td>
<td>14</td>
<td>95</td>
<td>86</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>NE</td>
<td>30</td>
<td>91</td>
<td>132</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>TUS 75 & 100TH AVE</td>
<td>NW</td>
<td>104</td>
<td>71</td>
<td>95</td>
<td>66</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Restraint Systems

<table>
<thead>
<tr>
<th>Restraint System</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Curb & Gutter</td>
<td>FRM. 2</td>
</tr>
<tr>
<td>Concrete Curb & Gutter</td>
<td>FRM. 3</td>
</tr>
<tr>
<td>Concrete Curb & Gutter</td>
<td>FRM. 5</td>
</tr>
<tr>
<td>Concrete Curb & Gutter</td>
<td>FRM. 7</td>
</tr>
<tr>
<td>Concrete Curb & Gutter</td>
<td>FRM. 9</td>
</tr>
</tbody>
</table>

Diagram

- [Image of the diagram showing the case study and ramp details]
Case Study
Breckenridge, MN

<table>
<thead>
<tr>
<th>INTERSECTIONS</th>
<th>QUADRANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH 75 & WILKIN AVE</td>
<td>SE</td>
</tr>
<tr>
<td>TH 75 & WILKIN AVE</td>
<td>SW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2521</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE WALK</td>
<td>PEDESTRIAN CURB RAMP TYPE</td>
</tr>
<tr>
<td>4"</td>
<td>12</td>
</tr>
<tr>
<td>6"</td>
<td></td>
</tr>
<tr>
<td>SQ FT</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>PERPENDICULAR RAMP</td>
</tr>
<tr>
<td>SQ FT</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>PERPENDICULAR RAMP</td>
</tr>
</tbody>
</table>
Case Study
75th/76th Street
Richfield, MN

§ Full Reconstruction

§ Complete Streets Project

§ Included sidewalk, regional trail and bike lanes
Case Study
75th/76th Street
Richfield, MN
Case Study
75th/76th Street
Richfield, MN
Case Study
75th/76th Street
Richfield, MN

§ Construction Challenges

§ Joint between bituminous trail and concrete pedestrian ramp

§ Cross slope on bituminous trail
Case Study
75th/76th Street
Richfield, MN

§ Construction Challenges
§ Pedestrian ramp landings
Case Study
Pavement Management Program
Richfield, MN

§ Mill and Overlay/Sealcoat/Sidewalk Repairs

§ Construction Challenges
 § ADA rules keep changing
 § Funding
 § Tracking Inventory
 § Timeframe
Case Study
Pavement Management Program
Richfield, MN

Replacement

Shaving trip hazards
City of Richfield ADA Transition Plan

§ Priority for City Council

§ Replace Curb Ramps

§ Capital Improvement Projects
§ Pavement Management Program
§ Accessibility Improvement Requests

§ $20,000/year- Sidewalk/ADA

§ $1,000/ramp
§ 1200+ Ramps in Richfield
§ 267 Ramps Currently Un-Programmed
Since 2005, Richfield has spent $16,000 annually replacing ramps.

Current Program Outlook

- 85 miles of residential streets for surface maintenance (mill and overlay)
- Average of 2 miles/year completed
- 43 years to complete at current rate