Mining Bus Location, Passenger Count and Fare Collection Database for Intelligent Transit Applications

Chen-Fu Liao
Minnesota Traffic Observatory
Department of Civil Engineering

Henry Liu
Department of Civil Engineering

Industrial Partner: Metro Transit

21st Annual Transportation Research Conference
April 27-28, 2010, St. Paul, MN
Acknowledgement

• Digital Technology Center, UMN
• Intelligent Transportation Systems Institute, UMN
• Metro Transit
• Prof. Nigel Wilson, Civil and Environmental Engineering, MIT
Outline

- Description of Data Obtained from Metro Transit
- Potential Applications of Data Mining
 - Bus scheduling and planning
 - Transfer and Access Analysis
- Summary and On-going Research
Summary of Data from Metro Transit

Obtained 1-Month of Bus AVL/APC/AFC Data

- 120+ routes, 1600+ time points (TP)
- 15,000+ stops; 10,500+ nearside stops (67%)
- 4.2 million Automatic Vehicle Location (AVL) raw data
- 3.4 million Automatic Passenger Count (APC) processed records (0.5 million at time point), about 30% of fleet equipped with APC
- 2.1 million fare collection (GoTo Card) transaction data
Time Points and Stops

Stop Level

- Board/Alighting Available on APC Equipped Buses (25-30%)
- Smart Card Transaction Time
- Match APC Data to Each Stop by Location
- Arrival/Departure Time Unknown (AVL Poll Every Minute)

In addition to the data at the stop level:
- Check-In/Check-Out Time Available

Time Point Level
Challenges

How to transform the massive data into useful information and support decision-making

Data | Information | Applications
Transit Performance Analysis Framework

Database Model
- Schedule Data
- AVL Data
- APC Data
- Farecard Data

Transit Database

Arterial Traffic Data

Measures
- Running Time
- Dwell Time at Stop
- Delay at Signal
- Transfer Activity

Applications
- Route Performance
- Anomaly Detection
- Ridership Analysis
- Schedule Adjustments
- Bus Travel Time
- TSP Deployment Suggestions
- Visualization
- Real Time Service Management

Environmental Factors (Accidents, Incidents, Weather, etc.)
Potential Applications

- **Route Performance Analysis (TP or Stop Level)**
 - Study delay caused by signal
 - Minimize holding at TP and improve speed & productivity

- **Transfer Activity and Access Behavior Analysis**
 - Use AVL and AFC data to infer boarding location
 - Origin and destination analysis
 - How far do people travel to access transit?

- **Many others, such as TSP**
 - Run time schedule decision support
Application I Route Performance Analysis

• TP or Stop Level Dwell Model

• Segment / Link Travel Time Analysis

• Route Model
Prototype of TP Level Analysis GUI

Time Point Analysis

Link Analysis

Route Analysis
Bus Arrival Adherence at Time Point FAUN

Adherence: 84%

Graph: Nov08-16E-FAUN-All-Arrival Adherence (901)

Arrival (min) - Late(+), Early(-)

Early
Late
Bus Dwell Time Variation During Time of Day at Time Point FAUN

![Graph - Adherence](image.png)

Nov08-16E-FAUN-All-Dwell (24)

- **Dwell-AVG**
- **Dwell-85 Percentile**
- **Dwell-15 Percentile**
- **Dwell**

Time of Day (hr)

Dwell Time (Min)

University of Minnesota

ITS INSTITUTE

Intelligent Transportation Systems

Minnesota Traffic Observatory (MTO)

University of Minnesota
Actual and Scheduled Link Travel Time
From FAUN To SNUN

Nov2008-16E-All-FAUN->SNUM - Travel Time (24)
Example Route On-Time Performance Measure

Route 16

On-time Adherence 89%

All Routes

On-time Adherence 90%
Time-Space Diagram

- On time
- Early
- Late
- Time of Day (hr)
- Headway
- Slope = Average Speed
- Dwell Time

Bus Location (Mile)

University of Minnesota

ITS Institute
Intelligent Transportation Systems

Minnesota Traffic Observatory (MTO)
University of Minnesota
Time Point FAUN and SNUN

- **FAUN** - Fairview & University
- **SNUN** - Snelling & University

- **16 E - Nearside Stops**
- **16 E - Farside Stops**
- **Midway Hospital**
Application II — Transfer & Access Analysis

- Transfer Activities
- Transit Access Behavior
GoTo Card Transaction Analysis, User X

158 Trips, 79 Transfers, 79 Tap On
GoTo Card Transfer Analysis, User X

- Route 675 Headway at Peak Hours: 30 min.
- Route 18 Headway at Peak Hours: 8-10 min.
- AM Transfer Time from Route 18 to 675: 13 min.
 (Min=2 min., Max=38 min. <Miss Earlier Bus?>)
- PM Transfer Time from Route 675 to 18: 4 min.
 (2 Outliers, 54 min. and 57 min., attend other activities in downtown Minneapolis after returning from work?)
UMN MetroPass - Access to Transit Analysis

- Geocode UMN MetroPass Addresses Using 2005 Twin Cities Street Map From Metropolitan Council
- Compute Traveling Distance from Address to all Tap-On Transaction Locations
- Distribution of Traveling Distance to Access Transit
- Single User Origin to Destination Information
UMN MetroPass Distribution of Access Distance

Mean=4262.59 m (2.65 mile), Median=414 m (0.25 mile), 5th-percentile=44 m (0.03 mile), 95th-percentile=25721 m (16 mile), 99th-percentile=38684 m (24 mile), Maximum=58014 m (36 mile)
MetroPass Access to Transit Analysis, User UM1
MetroPass Transit O-D Analysis, User UM1

Nov2008-Smart Card-Access Distance Distribution - Single User (31)

- Tap On (A)
- Tap On (B)
- Tap On (C)

Travel Distance to Access Transit (mile) vs Frequency %

Access Distance Distribution - Single User
Summary

- Developed a transit data analysis methodology to process AVL/APC and AFC (GoTo Card) data systematically
- Opportunities in assisting transit agencies to evaluate the performance of transit network systematically
- Transfer activities and access behavior analyses utilizing the results from the transit data processing
Ongoing Work

- Develop a route based transit simulation model to evaluate,
 - Schedule
 - Route productivity and reliability
 - Stop spacing
 - Limited stop services
 - Recovery time
 - Bus Rapid Transit (BRT) and/or TSP

- A tool to support transit planning and scheduling
Thank You!

Metro Transit

Bus Arrival Info.

Automatic Fare Collection

Signal Priority

The Digital Technology Center
a center of the Institute of Technology

ITS INSTITUTE
Intelligent Transportation Systems

Minnesota Traffic Observatory (MTO)
University of Minnesota