Statewide Traffic Flow Data: Probe Vehicle Study for Iowa DOT

Erik Minge, PE
SRF Consulting Group, Inc.

May 25, 2011
Types of Mobile Probe Data

- Cellular Telephone-Based Methods
 - Angle of arrival (E911)
 - Cellular network traffic analysis
 - Tower association

- Device-Based Tracking Methods
 - Cellular phone application-based tracking
 - GPS-based fleet systems
 - Wireless device detection (Bluetooth reader)

- Hybrid Methods
Iowa DOT Data Needs

<table>
<thead>
<tr>
<th>Need Area</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning applications</td>
<td>• Statewide travel demand modeling</td>
</tr>
<tr>
<td></td>
<td>• Origin/destination studies</td>
</tr>
<tr>
<td>Traveler information</td>
<td>• Statewide 511 and flow map</td>
</tr>
<tr>
<td></td>
<td>• Travel time posted on DMS</td>
</tr>
<tr>
<td>Traffic management applications</td>
<td>• Incident detection</td>
</tr>
<tr>
<td>Federal requirements</td>
<td>• Section 1201 (Real-Time System Management Information Program)</td>
</tr>
<tr>
<td></td>
<td>• Performance measures</td>
</tr>
<tr>
<td>Research</td>
<td>• Various</td>
</tr>
</tbody>
</table>
A Different Animal

BLACK BOX

- Travel time
 - DMS display
 - 511 system
 - Web map
 - Incident detection
 - Calibrate travel demand model

- Average speed
- Origin/Destination
- Research
Data Collection Methods

<table>
<thead>
<tr>
<th>Location Based</th>
<th>Area Based (Mobile Probe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>Reliable</td>
<td>Large geographic area</td>
</tr>
<tr>
<td>Accurate</td>
<td>No infrastructure deployment</td>
</tr>
<tr>
<td>Real-time</td>
<td></td>
</tr>
<tr>
<td>Granular</td>
<td></td>
</tr>
<tr>
<td>Con</td>
<td>Con</td>
</tr>
<tr>
<td>Limited geographic area</td>
<td>Time lag</td>
</tr>
<tr>
<td>Comm infrastructure needs</td>
<td>Less robust in low volumes</td>
</tr>
<tr>
<td>Capital costs</td>
<td>No volume data</td>
</tr>
<tr>
<td>O&M costs</td>
<td>Ongoing cost</td>
</tr>
</tbody>
</table>
Agencies Surveyed
Survey Questions

• Describe roadway system and coverage area
• How are you using data?
 – Planning
 – Dynamic message signs
 – 511 system
 – Severe weather impact analysis
• How have you dealt with the non-technical issues?
• Have you conducted an evaluation?
• Data accurate enough for intended applications?
• Greatest benefits?
• Lessons learned?
Survey Findings

- Data field indicates data source
- Historical data substituted in low volume conditions
- Time lag in data
 - Lag is longer when speeds are low
 - Lag occurs when need for data is greatest (i.e. incident)
 - Data will sometimes revert to historical conditions
- Roadway segments based on Traffic Message Channel (TMC)
- Improved performance seen over time, probably due to greater penetration
Survey Findings (cont.)

- Massachusetts 511 system received data at no cost in return for advertising.
- Data costs are higher if:
 - Real time data (as opposed to historical)
 - Non-standard (non-TMC) roadway segments
- Clearly state data requirements
 - Length of time data is made available
 - Allowed uses for data
INRIX Data Evaluation

- 30-day trial evaluation, August-September 2010
- 17 roadway segments chosen in Iowa
- Existing sensors (loops, NIT) used as baseline for comparison
- Data was queried from INRIX’s database and stored for analysis
Test Methodology

- Evaluate Performance
 - High and low volume roadways
 - Peak and off peak periods
 - Work zone caused congestion
 - Incident caused congestion

- Document source of data (real time vs. historical)
 - Urban vs. rural roadways
 - Number of lanes
 - Freeway vs. expressway vs. arterial
 - Time of day
Metadata Analysis

Data Source by Road Segment

- # of lanes/rural vs. urban/hwy vs. expy, fwy, or arterial/segment #

- **Real-Time Data**
- **Mixed Data**
- **Historical Data**
Metadata Analysis

Data Source by Time (2-Lane Rural Highway)

- **Late Night Period** (10PM - 5AM)
- **AM Peak Period** (6:30AM - 8:30AM)
- **PM Peak Period** (4PM - 6PM)
- **Remaining Periods**

- **Real-Time Data**
- **Mixed Data**
- **Historical Data**

Data Source by Time (4-Lane Rural Expressway)

- **Late Night Period** (10PM - 5AM)
- **AM Peak Period** (6:30AM - 8:30AM)
- **PM Peak Period** (4PM - 6PM)
- **Remaining Periods**

- **Real-Time Data**
- **Mixed Data**
- **Historical Data**
Traffic Incident – July 8, 2010

I 35 SB at 1st St

Vehicle speed (mph)

I 35 SB from IA 87 to 1st St

Vehicle Speed (mph)

I 35 SB at IA 87

Vehicle Speed (mph)
Traffic Incident (cont.)

I 35 SB from IA 210 to IA 87

Vehicle Speed (mph)

I 35 SB at IA 210

Vehicle Speed (mph)

I 35 SB from US 30 to IA 210

Vehicle Speed (mph)
Comparison with Existing Sensor Data

I-80 at IA 1 (Iowa City)
8/31/10 - 9/7/10

US 59 NB (0.6 miles north of IA 141)
9/16/2010
INRIX Evaluation Summary

- Amount of real time data correlates with volume
- Speeds reduced by work zones and major traffic incidents
- Speed correlates with roadway detector stations
Potential Non-Technical Issues with Probe Approaches

- **Administrative issues**
 - Changes in data quality
 - Changes in data source
 - Changes in data frequency
 - Changes in method of aggregation/synthesis
 - Business model / contract changes
 - Bankruptcy

- **Political issues**
 - Loss of control over data management
 - Difficulties with anonymity
 - Difficulties in data security
 - Public reaction
 - Potential for abuse
Malte Spitz was surprised by how much detail Deutsche Telekom had about his whereabouts.
Recommendations & Conclusions

- Engage DOT stakeholders to explore use and value of mobile probe data
- Review metadata analysis to see if they meet DOT’s needs for various uses
- Consider potential non-technical issues
- Monitor marketplace
Questions/Comments?

Erik Minge, PE
eminge@srfconsulting.com