Wakota Bridge Monitoring and Analysis
Introduction

- Bridge thermal loadings play a significant role in Structural behavior.
- Well documented for superstructure.
- AASHTO does not specifically address provisions for piers in flexible pier systems.
- Investigate thermal behavior and provide insight into pier design in flexible pier bridge systems.
Outline

- Wakota Bridge Background Information
- Wakota Specifics
- Designing for thermal loads
- Instrumentation
- Modeling

Chris Scheevel
General Information

- Highway 494 over Mississippi River
- Connects Washington and Dakota Counties
- Replacing 4 lane tied-arch bridge built in 1959
- Westbound Span completed summer 2006
- Eastbound Span scheduled for opening summer 2010.
- Will be widest bridge in MN when completed
Wakota Bridge Monitoring and Analysis

Superstructure

- PT Reinforced Concrete structure
- Double box girder
- Total length = 1886 ft
- Width at center = 85 ft
- Longest span = 471 ft
- When completed – 5 lanes in each direction

Typical cross section near Piers

Typical cross Section at Midspan
Wakota Bridge Monitoring and Analysis

Substructure

- Reinforced Concrete
- No Prestressing
- Pile driven footing

Department of Civil Engineering
Environmental · Geomechanical · Structures · Mechanics and Physics · Transportation · Water Resources
Wakota Bridge Monitoring and Analysis

Piers 2, 3, 4

Department of Civil Engineering
Wakota Bridge Monitoring and Analysis

Segmental Cast in Place Cantilever Construction

Chris Scheevel

Department of Civil Engineering
Thermal Design

• Uniform temperature change
 – Greatest contributor to pier moment

• Temperature Gradients
 – Large component of stress in Superstructure

• Two Procedures in AASHTO
 – A: Based on ‘Moderate’ or ‘Cold’ climate
 • Cold = 0 - 80degF
 – B: Based on Contour maps

• MN requires procedure B for atypical bridges (150 deg temp. variation)
Flexible Pier Design

- Ductility for temp range
- Designer must consider variables affecting forces in piers
 - Pier stiffness - Cracked section properties
 - Foundation stiffness
 - A 3-D model may be required to determine appropriate cracked section.
 - Time dependant effects
- Designer Judgement
Instrumentation

- Designed to capture behavior of thermal movements of structure when combined with analysis.
- 84 vibrating wire strain gages with thermisters
 - Embedded in concrete
 - Ability to correlate strain changes with temp. changes
- 2 linear string potentiometers
- Data acquisition system from Campbell Scientific

Geokon Vibrating Wire Strain gage
Strain gages (44) located in piers most affected by temperature variation and lateral loads.
Wakota Bridge Monitoring and Analysis

Pier Wall Instrumentation

Both piers instrumented at two elevations, gages paired along width of wall

Representative Pier Cross Section
Superstructure Instrumentation

- Axial Stresses relieved in spans 1, 2, and 5 due to expansion joints
 - Spans 3 and 4 will have greatest stresses due to temperature variations
- Want strains and stresses due to mainly temperature
 - Place gages away from max LL stresses
- Overall expansion of Structure
 - String pot at abutments

HX-P420 String Pot
Wakota Bridge Monitoring and Analysis

Superstructure Instrumentation

- String Pot
- Section P2-4U instrumented
- Section P4-6D instrumented

Department of Civil Engineering

Chris Scheevel
Wakota Bridge Monitoring and Analysis

Superstructure Instrumentation

Gage Locations in cross sections with respect to section dimensions

= VW Gage

Chris Scheevel

Department of Civil Engineering
Data Acquisition

• Equipment from Campbell Scientific
 – Dataloggers
 • Store and organize data
 – Vibrating wire interfaces
 • Reads frequency from VWSG’s
 • Performs FFT to determine resonant freq.
 • Can find change in L
 – Multiplexers
 • Allow up to 16 VW gages to be read by one input on Interface
 – Multidrops and wireless modem
 • Transmit all data via a cellular telemetry account
Analysis

- SAP2000 used to implement staged construction model
 - Time-dependent losses important
 - Future correlation with field data
 - Strains to stresses and forces
 - Specific iterative approach for evaluation of cracked stiffness in piers to be implemented and evaluated
 - Comparison to results from solid element model incorporating nonlinear material properties (ABAQUS)
Analysis

- Designer Approach to cracked stiffness
 - Stiffness updated along height of Pier for chosen number of updates
 - Analysis run using gross section properties
 - Moments plucked off model
 - Moments input into M-φ plot and curvature found.
 - New modulus for linear model found based on curvature
 - New modulus input into frame model
 - Repeat with updated stiffnesses until convergence (i.e. ΔE<1%)
Analysis

- Questions to be answered
 - How accurate is the updated stiffness method compared to a more complex model incorporating nonlinear materials?
 - Stiffness well predicted according to results so far.
 - How accurate compared to field data?
 - How many stiffness updates are appropriate?
 - Superstructure Behavior with temp loading.
Wakota Bridge Monitoring and Analysis

Summary

- Wakota Bridge instrumented for thermal loading analysis
- Staged construction model being built for data correlation, analysis and design considerations
- Cracked section properties and methods for design being investigated

Chris Scheevel
Department of Civil Engineering
Environmental · Geomechanical · Structures · Mechanics and Physics · Transportation · Water Resources
Thank you

Questions?