Federal Highway Administration
Long-Term Bridge Performance Program

LTBP Program

John K. Penrod, PE
Pilot Program Project Manager
Long-Term Bridge Performance Program
Federal Highway Administration
Turner-Fairbank Highway Research Center
McLean, Virginia
LTBP Program Objectives

Collect, Document and Maintain high quality, quantitative performance data

Improve Knowledge of Bridge Performance

Tools for improved asset management
LTBP Program Approach

• Detailed inspection, periodic evaluation and monitoring utilizing sensor technology

• Representative sample of “work-horse” highway bridges

• Forensic autopsies of decommissioned bridges

• Accelerated testing
Expected Outcomes of the LTBP Program

- Better performance measures and predictive models
- Data on operational performance
- Means to quantify effectiveness of various maintenance, preservation, repair and rehabilitation strategies
- Data to support improved deterioration models and life-cycle cost analysis
- Support for development of the next generation of Bridge Management Systems
Step 1: Defining Bridge Performance

Step 2: Data to be Collected

Step 3: Data Management System

Step 4: Design the Experimental Program

Step 5: Data Collection

Step 6: Data Analysis & Modeling

Step 7: Dissemination of Findings

Program Outcome

Long-Term Bridge Performance Program

U.S. Department of Transportation
Federal Highway Administration
LTBP Pilot Program Schedule

- Pilot Program will last 2 years
- Begin Pilot Program late summer/early fall 2009
- 3 to 4 months to kick off and instrument each bridge
 - 2 weeks for visual inspection and NDE
 - 3 months for instrumentation
 - Developing instrumentation plan
 - Developing site plan for DOT approval
 - Contracting necessary field work
 - In place instrumentation of bridge
LTBP Pilot Program – Virginia Pilot Bridge

- Selected as first pilot bridge
 - Proximately to FHWA Turner-Fairbank and Headquarters
 - Accessibility to many LTBP team members
- U.S Route 15 over I-66 Haymarket, VA
- Constructed in 1979
- Continuous built-up steel girder
- CIP concrete deck
- AADT of 16,500 with 6% truck traffic
- Deck condition rating of 6 in NBI
LTBP Pilot Program – New Jersey Bridge

- I-195 over Sharon Station Rd 13 miles east Trenton, NJ
- Proximity to WIM and weather station
- Constructed in 1969
- Single-span, simple span steel girder bridge
- CIP concrete deck with SIP forms
- AADT of 24,970 with 14% truck traffic
- Deck condition rating of 6 in NBI
LTBP Pilot Program – Utah Pilot Bridge

- Selected as second pilot bridge
- I-15 over Cannery Road 1.5 miles west Perry, UT
- Proximity to weigh station
- Constructed in 1976
- Single span AASHTO beams with integral abutment
- CIP concrete deck with asphalt overlay and membrane
- AADT of 22,250 with 29% truck traffic
- Deck condition rating of 7 in NBI
LTBP Pilot Program – California Pilot Bridge

- I-5 over Lambert Road – 25 miles south of Sacramento
- Constructed in 1975
- Pre-stressed post-tensioned continuous cast-in-place Box Girder Bridge
- 2 span bridge w/ structure length of ~260ft & maximum span length of 130ft
- Twin bridge, carries two-lanes of traffic in one direction over Lambert Rd.
- AADT of 24,500 with 21% Truck Traffic
- NBI Rating of 7 for super, 5 for deck, 8 for sub
- 8° skew
Minnesota Bridge Selection Criteria

- Structure Type
 - Deck Truss
 - Horizontal Curve
 - High Skew
- Age – Older than 40 years
- AADT < 10,000
- NBI Rating, Deck and Superstructure ≤ 7
LTBP Minnesota Pilot Bridge Selection Process

- Criteria entered into NBI to generate initial shortlist
- Discussion held between FHWA and LTBP contract
- Initial Shortlist reduced to 5 bridges
 - TH 243 over St. Croix River (Deck Truss)
 - TH 123 over Kettle River (Deck Truss)
 - US 8 WB over TH 8 (Horizontal Curve)
 - I-35E SB near JCT TH5 (Horizontal Curve)
 - County Highway 48 onto I-35 SB (Horizontal Curve)
LTBP Pilot Program – Minnesota Pilot Bridge

- TH 123 over Kettle Road – Near Sandstone State Park
- Constructed in 1948
- Built-up steel deck truss bridge
- 3 span bridge w/ structure length of ~400ft & maximum span length of 200ft
- Carries two-lanes of traffic one in each direction
- AADT of 2,050 with 8% Truck Traffic
- NBI Rating of 5 for super, 6 for deck, 7 for sub
- Historic Structure
LTBP Pilot Program Field Investigation

- Deck inspected on a two-foot grid
 - Detailed Visual Inspection using ScanPrint Tablets
 - Non-Destructive Evaluation
- Complimentary Material Sampling/Testing
- Live Load Testing
- Detailed “Segmental” Visual Inspection
LTBP Pilot Program NDE

- Ground Penetrating Radar
- Half Cell Potential
- Impact Echo
- Ultrasonic Pulse Echo
- Ultrasonic Surface Wave
LTBP Pilot Program - Visual Inspection Protocols

• Quantitative Measurements
 • Minimizes subjectivity of inspector
 • Can be used to generate “rating” if desired
• Well Defined Protocols aimed at repeatability
• Using two tablet systems
 • Bridge Data System (BDS)
 • ScanPrint
LTBP Pilot Program - Segmental Inspection Method

- Structure is broken down into “Segments”
- Defect can be accurately located

[Diagram showing a bridge structure divided into segments labeled A.1 to A.6, B.1 to B.6, C.1 to C.6, D.1 to D.6, E.1 to E.6, F.1 to F.6, with diaphragms indicated.]
LTBP Pilot Program - Visual Inspection (ScanPrint)
LTBP Pilot Program - Material Testing

- Chloride Contents
- Cover Depth
- Concrete Resistivity
- Corrosion Potential and Rate
- Carbonation of concrete
- Coring of Concrete
LTBP Pilot Program - After Baseline Survey

• Data is processed and loaded into LTBP Database
• Information is used to update Finite Element Model
• Long-Term Instrumentation Plan developed from FEM and Field Investigations
• Long-Term Instrumentation put in place
• Visual Inspection repeated on regular basis
• NDE and Material Testing as needed
LTBP Program Information

- LTBP Program Website
 - http://www.tfhrc.gov/ltbp

- LTBP Program e-mail
 - ltbp@dot.gov