Rural Highway Expansion and Economic Development

Impacts on Private Earnings and Employment

Michael Iacono and David Levinson
University of Minnesota
Department of Civil Engineering
24th Annual CTS Transportation Research Conference
May 23, 2013
Infrastructure Benefits

- Urban locations
 - § Agglomeration economies
 - ▶ Firm-level spillovers among non-related firms
 - ▶ Shared use of non-excludable inputs
 § transportation infrastructure
 - ▶ Investment mitigates externalities
 - § Accessibility
 - ▶ Access to larger markets, labor pools, etc.
Infrastructure Benefits

► Rural locations
 § Expand use of existing resources
 ► Capital, labor, etc.
 § Attract new resources, inputs
 ► Firm/household relocation
 § Raise productivity of existing businesses
 ► More intensive use of resources
 ► *Primary* benefit
Renewed Emphasis: ARRA, Fiscal Stimulus

► Oct. 2010: Dept. of Treasury report
 $ $50 billion infrastructure package

► Authors claims
 $ Long-term economic benefits
 $ Middle class benefits greatly
 $ Make use of underutilized resources
 $ Strong demand for investment from people and businesses
Crowding In or Crowding Out?
Highways and Economic Growth: Estimating Casual Relationships

- “Natural” experiments
- IV Regression
- Panel Analysis
- Granger causality
Data Sources

BEA Earnings data

► Advantages
 § Longer time series

► Disadvantages
 § Higher level of aggregation

QCEW employment data

► Advantages
 § Greater spatial disaggregation (MCD level)

► Disadvantages
 § Only available since 2000
Aggregate (County-Level) Analysis of Earnings
Empirical Approach

- Counterfactual Analysis of Earnings
 § Highway improvement as binary
 § Pre/post-construction periods
 § Time/location-specific interaction variables

- Panel data set
 § County with highway improvement + neighbors
 § Private earnings, Years 1991-2009

- Focus on “transportation-intensive” industries
Empirical Model of Earnings

\[\ln y_{it} = \alpha + \beta_1 \ln GDP_t + \beta_2 \ln StateEarnings_t + \beta_3 \ln Pop_t + \sum_{j=1}^{3} \gamma_j \text{County}_j + \epsilon_{it} \]

(4.1)

where:

\(\ln y_{it} \) = natural log of earnings in a given industry in county \(i \) at time \(t \)
\(\ln GDP_t \) = natural log of real GDP (in 2009 dollars) at time \(t \)
\(\ln StateEarnings_t \) = natural log of state-level earnings in a given industry at time \(t \)
\(\ln Pop_t \) = natural log of population in county \(i \) at time \(t \)
\(\text{County}_j \) = indicator variable identifying the county (or counties) in which the highway improvement was located during a specific period, \(j \)

\(\epsilon_{it} \) is an error term, and
\(\alpha, \beta_1, \beta_2, \beta_3, and \gamma_j \) are parameters to be estimated.
Estimation

- OLS with panel-corrected SE
 - Allows for individual (county) specific effects and correlation across panels

- Error structure
 - Assumes AR(1) process for serially-correlated residuals
TH 371 Improvements (Crow Wing/ Morrison Counties)
Traffic Volume Growth

TH 371 just south of Brainerd bypass

AADT

Crow Wing 371 ADT

0 2000 4000 6000 8000 10000 12000 14000
Industry-Level Earnings Regressions: TH 371 Improvements

<table>
<thead>
<tr>
<th>Variable</th>
<th>Construction</th>
<th></th>
<th>Manufacturing</th>
<th></th>
<th>Retail</th>
<th></th>
<th>Wholesale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>S.E.</td>
<td>t-value</td>
<td>Coeff.</td>
<td>S.E.</td>
<td>t-value</td>
<td>Coeff.</td>
<td>S.E.</td>
</tr>
<tr>
<td>In GDP(_t)</td>
<td>-0.648</td>
<td>0.303</td>
<td>-2.14</td>
<td>0.654</td>
<td>0.239</td>
<td>2.73</td>
<td>-0.390</td>
<td>0.131</td>
</tr>
<tr>
<td>In StateEarn(_t)</td>
<td>1.084</td>
<td>0.174</td>
<td>6.24</td>
<td>0.871</td>
<td>0.233</td>
<td>3.73</td>
<td>0.839</td>
<td>0.076</td>
</tr>
<tr>
<td>In Pop(_t)</td>
<td>0.743</td>
<td>0.155</td>
<td>4.79</td>
<td>-0.091</td>
<td>0.179</td>
<td>-0.51</td>
<td>1.063</td>
<td>0.122</td>
</tr>
<tr>
<td>CrowWing(_t1)</td>
<td>0.685</td>
<td>0.179</td>
<td>3.82</td>
<td>2.194</td>
<td>0.188</td>
<td>11.67</td>
<td>0.515</td>
<td>0.144</td>
</tr>
<tr>
<td>CrowWing(_t2)</td>
<td>0.698</td>
<td>0.179</td>
<td>3.90</td>
<td>2.139</td>
<td>0.188</td>
<td>11.38</td>
<td>0.510</td>
<td>0.144</td>
</tr>
<tr>
<td>CrowWing(_t3)</td>
<td>0.797</td>
<td>0.184</td>
<td>4.34</td>
<td>2.013</td>
<td>0.192</td>
<td>10.46</td>
<td>0.530</td>
<td>0.148</td>
</tr>
<tr>
<td>Morrison(_t1)</td>
<td>0.211</td>
<td>0.099</td>
<td>2.13</td>
<td>1.504</td>
<td>0.133</td>
<td>11.28</td>
<td>-0.030</td>
<td>0.098</td>
</tr>
<tr>
<td>Morrison(_t2)</td>
<td>0.116</td>
<td>0.091</td>
<td>1.28</td>
<td>1.537</td>
<td>0.124</td>
<td>12.41</td>
<td>-0.019</td>
<td>0.092</td>
</tr>
<tr>
<td>Morrison(_t3)</td>
<td>0.183</td>
<td>0.093</td>
<td>1.96</td>
<td>1.433</td>
<td>0.131</td>
<td>10.97</td>
<td>0.040</td>
<td>0.094</td>
</tr>
<tr>
<td>Constant</td>
<td>11.839</td>
<td>6.863</td>
<td>1.73</td>
<td>-10.220</td>
<td>4.510</td>
<td>-2.27</td>
<td>-10.247</td>
<td>1.685</td>
</tr>
<tr>
<td>(\hat{\rho})</td>
<td>0.688</td>
<td></td>
<td></td>
<td>0.723</td>
<td></td>
<td>0.746</td>
<td>0.540</td>
<td></td>
</tr>
<tr>
<td>Wald (\chi^2(9))</td>
<td>1699.83</td>
<td></td>
<td></td>
<td>2359.04</td>
<td></td>
<td>2047.87</td>
<td>912.80</td>
<td></td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.997</td>
<td></td>
<td></td>
<td>0.961</td>
<td></td>
<td>0.997</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>95</td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td>95</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>
Disaggregate Analysis of Employment
Empirical Approach

- Similar to earnings analysis
- Individual municipalities as units of observation
 - Total private employment
 - Restricted to county/counties where highway improvement is located
- 11-year panel (2000-2010)
Empirical Model of Employment

\[\ln(e_{it}) = \alpha + \beta_1 \ln(P_{it}) + \beta_2 \ln(I_{it}) + \sum_{j=1}^{5} \gamma_i(Highway_i) + \epsilon_{it} \]

where:

- \(\ln(e_{it}) \) = natural log of total private sector employment in city \(i \) at time \(t \)
- \(\ln(P_{it}) \) = natural log of population in county \(i \) at time \(t \)
- \(\ln(I_{it}) \) = natural log of real per capita income (in 2009 dollars) in city \(i \) at time \(t \)
- \(Highway_i \) = indicator variables representing location and time-varying characteristics of city \(i \)
- \(\epsilon_{it} \) = an error term, and
- \(\alpha, \beta_1, \beta_2, \text{ and } \gamma_i \) are parameters to be estimated.
Location of Cities Relative to Improved Highway

Non-highway city

Non-highway city

Improved highway segment

City on improved highway segment

Upstream downstream cities
Temporal Aspects of Highway Variables

- Off-highway city (Q_{before}) base case
- On-highway city (H_{before})
- Upstream/downstream city (U_{before})
- Off-highway city (Q_{after})
- On-highway city (H_{after})
- Upstream/downstream city (U_{after})

Highway Improvement (before) (after)
Table 1: Private-sector employment regressions for US 71/TH 23, TH 371, and US 53 improvements

<table>
<thead>
<tr>
<th>Variable</th>
<th>US71/TH23</th>
<th>TH371</th>
<th>US53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>S.E.</td>
<td>Coeff.</td>
</tr>
<tr>
<td>$\ln P_{it}$</td>
<td>0.926</td>
<td>0.011</td>
<td>84.88</td>
</tr>
<tr>
<td>$\ln I_{it}$</td>
<td>0.660</td>
<td>0.013</td>
<td>49.24</td>
</tr>
<tr>
<td>O_{after}</td>
<td>0.002</td>
<td>0.028</td>
<td>0.07</td>
</tr>
<tr>
<td>H_{before}</td>
<td>0.528</td>
<td>0.045</td>
<td>11.60</td>
</tr>
<tr>
<td>H_{after}</td>
<td>0.524</td>
<td>0.041</td>
<td>12.90</td>
</tr>
<tr>
<td>U_{before}</td>
<td>-0.267</td>
<td>0.045</td>
<td>-5.91</td>
</tr>
<tr>
<td>U_{after}</td>
<td>-0.176</td>
<td>0.038</td>
<td>-4.69</td>
</tr>
<tr>
<td>A_{before}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{after}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-6.769</td>
<td>0.140</td>
<td>-48.48</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

► Very little evidence of significant effects on private earnings, employment
 § Not the same as “no net benefits”
 § Positive, but not significant?

► User benefits analysis better for these types of projects
 § BCA for safety, travel time savings
Conclusions (Technical Issues)

- Corridor strategies (TH 23, 53, 371)
- Limited post-construction data
 - Confounding factors (08-09 recession)
 - More data would be helpful (follow projects)
- Exogeneity of population
 - Simultaneity of population, employment, transportation investment
Why Lower Returns?

- Decline of transport costs
 - Transportation fell from 8% of GDP in 1929 to 3% in 1990 (Glaser and Kohlhase 2004)

- Diminishing Returns
 - Mature networks

- Political interference
This research was supported by a grant from the Minnesota Department of Transportation through the project “Case Studies of Transportation Investment to Identify the Impacts on the Local and State Economy”
Questions or Comments