Evaluation of the Minnesota Road Fee Test: Preliminary Data

Christopher Armstrong
Transportation Engineer, SAIC
Overview of Presentation

1. Background on Minnesota Road Fee Test
2. Evaluation Approach
3. Wave A Data Collection
4. Wave A Preliminary Results
Background
Minnesota Road Fee Test

• Test of integrated safety and mileage based user fee applications
 – Mileage based user fee
 – In-vehicle safety signing
 – Intersection Collision Avoidance (CICAS)
 – Travel time applications

• Real-world deployment
 – 500 participants

• Simulated revenue operations

• Test is on-going
 – Across 14 months
 – 3 “waves” to control for seasonal variations; within each wave:
 • 2 month Baseline Period
 • 4 month Testing Period
Minnesota Road Fee Test: Role of the Evaluator

- SAIC role
 - Develop the experimental design and implementation framework
 - Manage participant feedback
 - Conduct evaluation and develop recommendations / lessons learned
Evaluation Approach – Data Sources

- **Driving Data**
 - Quantitative
 - Baseline vs. Test Driving Behavior

- **Surveys**
 - Quantitative
 - 1 Baseline Survey vs. 2 Test Surveys

- **Focus Groups**
 - Qualitative
 - 2 Focus Groups per Wave

- **Interviews**
 - Qualitative
 - Individual Participant Interviews

5/24/2012
Data Collection

Driving Data
- **MBUF** – number of miles driven by geography
- **Trip data** – non-associated data including second-by-second speed, heading, location, etc.
- **Signage data** – trip data at signage locations
- **Service requests**

Evaluation Data
- Surveys
- Focus groups
- Interviews
- Diaries
- Participant feedback
WAVE A – PRELIMINARY RESULTS
Wave A Data Collection: By the Numbers

A Data Rich Test – Wave A completed March 2012

- 137 participants
- 37,180,193 **trip data points**
- 34,314 **trips** through signage zones
- 426 online **survey** responses
 - Baseline (n=146)
 - Novice (n=141)
 - Experienced (n=139)
- 19 **focus group** participants
- 127 participant **telephone interviews**
- 107 participant **diaries** received
Preliminary Results (Wave A only)

1. Vehicle Trip Data Collection
2. In-Vehicle Safety Signage
3. Mileage Based User Fees
VEHICLE TRIP DATA COLLECTION
Example of Trip Data Collection

432,014 data points collected across 381 total trips for a single participant.

Key Consideration – The system is designed so that this data is protected and cannot be associated with an individual without their permission.
Potential for Enhanced Travel Time Estimation

Even a basic application shows the opportunities for enhanced travel time estimation.
Driver Perceptions of a Service Providing Travel Time Estimation

- Drivers did **not** experience travel time data
- Focus group findings
 - Potential for better allocations of road maintenance funding
 - Real-time travel information not perceived as immediately valuable but drivers would be open to trying it
IN-VEHICLE SAFETY SIGNAGE
Participant Experience – What does the participant see?

- Speed Limit 65
- Speed Limit 20 when flashing
- Road Work Ahead
- Curve Ahead
Wave A Sample Size: One School Signage Zone

- 606 trips through signage zone during test
- 85 different participants traveled through zone (62% of participants)
Participant Experience: In-Vehicle Safety Signage

- 1 Participant’s Experience
 - 76 trips during the test period involved a signage zone (20 percent of total trips)
 - Experienced 12 different signage zones

<table>
<thead>
<tr>
<th>Signage Zone Type</th>
<th>Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>47 (62%)</td>
</tr>
<tr>
<td>School</td>
<td>27 (36%)</td>
</tr>
<tr>
<td>Curve</td>
<td>2 (3%)</td>
</tr>
</tbody>
</table>
Example of Speed Profile Data for One Trip Through a Signage Zone

Signage Zone 128
Speed Zone
Speed Limit = 40 mph

US 12 - EB
near Delano, MN

Speed Profile - Signage Zone ID 128

- **Speed = 63 mph**
 Signage Zone Entered;
 Signage Displayed;
 No Audible Alert (44mph)

- **40 mph speed limit**

- **Speed = 34 mph**
 Signage Zone Exited;
 Speed = 34 mph
Driver Perceptions of In-Vehicle Speed Safety Signage

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs Easy to Read</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>“Beeps” Easy to Hear</td>
<td>99%</td>
<td>96%</td>
</tr>
<tr>
<td>Signs Easy to Understand</td>
<td>100%</td>
<td>98%</td>
</tr>
<tr>
<td>Understand Why “Beeps” Occur</td>
<td>99%</td>
<td>96%</td>
</tr>
</tbody>
</table>

“Novice” indicate responses after 2-3 weeks of usage
“Experienced” indicate responses after 3 months of usage

Percentages indicate responses of “Agree” or “Somewhat Agree” excluding those who responded “Not Sure”
Driver Perceptions of In-Vehicle Speed Safety Signage (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs are Useful</td>
<td>72%</td>
<td>73%</td>
</tr>
<tr>
<td>“Beeps” are Useful</td>
<td>65%</td>
<td>61%</td>
</tr>
<tr>
<td>Prefer to Disable Signs</td>
<td>45%</td>
<td>47%</td>
</tr>
<tr>
<td>Prefer to Disable “Beeps”</td>
<td>52%</td>
<td>59%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs Distracting</td>
<td>52%</td>
<td>57%</td>
</tr>
<tr>
<td>“Beeps” Distracting</td>
<td>73%</td>
<td>63%</td>
</tr>
</tbody>
</table>

Percentages indicate responses of “Agree” or “Somewhat Agree” excluding those who responded “Not Sure”
Driver Perceptions of In-Vehicle Speed Safety Signage (cont’d)

• “There is a need for this” (but I don’t need it)
 – Valuable to young drivers
 – Curve warnings could be helpful on curves at night
 – Could be useful in unfamiliar areas

• Zones should be “smart” (e.g., know when school is not in session)
 – Seen as a failure in accuracy

• Feature should be optional
MILEAGE BASED USER FEES
Wave A Mileage and Fee Summary

Average # Days: 120
Total # Trips: 83,098
Avg. # Trips/Participant: 589

Device Miles Collected by Fee Pricing Category

- **North America Miles ($0.00 fee):** 3 (<1%)
- **United States Miles ($0.00 fee):** 9,574 (2%)
- **Minnesota Miles ($0.01 fee):** $4,658.27 (88%)
- **Twin Cities-Peak Miles ($0.03 fee):** $29.87 (12%)

Total Miles Driven

- **Device Miles:** 496,400 (75%)
- **Unaccounted Miles:** 167,672 (21%)

Total Fees: $10,318.30
Avg. Fee/Participant: $73.18
(November 2011 – March 2012)

Average Fee/Mile: $0.0148

Target Fee/Mile: $0.0130
(*what the average Minnesota driver pays in the State gas tax*)
<table>
<thead>
<tr>
<th>Survey Topic</th>
<th>Baseline</th>
<th>Novice</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>I understand the reasons for considering replacing the gas tax with a mileage fee.</td>
<td>7%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>I understand how mileage fee revenue would be used.</td>
<td>15%</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Mileage fee revenue would benefit me as a driver.</td>
<td>24%</td>
<td>28%</td>
<td>20%</td>
</tr>
<tr>
<td>A mileage fee would be assessed in a way that is fair to all drivers.</td>
<td>27%</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>Mileage would be accurately counted and used to calculate fees.</td>
<td>36%</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>It would be easy to understand how a mileage fee is calculated.</td>
<td>34%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>It would be easy to pay invoices for mileage fees.</td>
<td>45%</td>
<td>5%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Percentages indicate responses of “Not Sure”
Opinions of MBUF Improved Throughout Test

<table>
<thead>
<tr>
<th>Survey Topic</th>
<th>Baseline</th>
<th>Novice</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>I understand the reasons for considering replacing the gas tax with a mileage fee.</td>
<td>94%</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>I understand how mileage fee revenue would be used.</td>
<td>78%</td>
<td>84%</td>
<td>85%</td>
</tr>
<tr>
<td>Mileage fee revenue would benefit me as a driver.</td>
<td>70%</td>
<td>76%</td>
<td>70%</td>
</tr>
<tr>
<td>A mileage fee would be assessed in a way that is fair to all drivers.</td>
<td>60%</td>
<td>49%</td>
<td>66%</td>
</tr>
<tr>
<td>Mileage would be accurately counted and used to calculate fees.</td>
<td>59%</td>
<td>55%</td>
<td>65%</td>
</tr>
<tr>
<td>It would be easy to understand how a mileage fee is calculated.</td>
<td>72%</td>
<td>89%</td>
<td>85%</td>
</tr>
<tr>
<td>It would be easy to pay invoices for mileage fees.</td>
<td>53%</td>
<td>80%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Percentages indicate responses of “Agree” or “Somewhat Agree”
General Reactions to MRFT

- Generally understand and respect goals of MnDOT in testing MBUF
- Very engaged; some drivers kept track & have “done the math”
- Open to GPS-based system and sharing data
 - Some perceptions of equipment malfunction or poor GPS coverage/accuracy; don’t want to be penalized unfairly
 - Some acknowledgement that people are already tracked by their cell phones
 - Not worried about government misuse of data; worried about hackers and data security
Reactions to Fees

- 81% reported fees as “expected” or “lower than expected”
- Over 60% felt it is “appropriate” to charge different fees by “Metro-zone” or by time of day
 - However, some expressed it is unfair to penalize people who can’t change their commute time or location
- Some indicated that vehicle type should be a factor
 - Heavier vehicles should pay more
- Some concerns about rural/urban equity, but not in conventional sense
 - More about how revenue will be distributed
Reactions to Technology Approach

- General concern that test system is too complicated
 - Prefer something simple and integrated like OnStar™, MnPass, or a “smart plate”
- Concern about interoperability; states would have to be able to talk to each other
- Not everyone has access to internet to pay invoices or check trips
- GPS and wireless data coverage are not available in all areas
- Concerns about how the system will be too costly to manage or administer
Conclusions

I’m open [to the concept] if you can clearly state how it will benefit everyone.

I don’t think it’s a bad idea, but don’t know how it would work. Unless maybe if it’s 100% integrated into [the] car.

...I am willing to pay more if I thought it was going to help the roads.

If they came up with something close to how it is being done now, equally foolproof, failsafe, [it] would be more OK. A mileage based alternative to fuel? I would be ok with it if all these concerns went away.

Something is going to have to change. Because in the future with hybrids coming out ...they [the government] are going to have a major financing issue.
Questions?

Christopher Armstrong
Transportation Engineer
Science Applications International Corporation (SAIC)
Transportation Solutions Division
703-676-4436
armstrongchr@saic.com

Cory Johnson
Connected Vehicle Program Engineer
Minnesota Department of Transportation
651-234-7062
coryj.johnson@state.mn.us