PCC Mix Designs Using Recycled Concrete Pavements

Mary E. Vancura, Derek Tompkins, & Lev Khazanovich
Overview

- Reassessment of recycled concrete aggregate (RCA) use in rigid pavements
- History of RCA use
- Characteristics of RCA concrete
- RCA production
- RCA concrete production
- Guidelines for RCA use
• Recent understanding of how to accommodate RCA in concrete is better
 - water-reducing admixtures/plasticizers
 - wash aggregate
 - no fines if unable to accommodate variable workability
• RCA is a valuable resource because it contains high-quality aggregates
• SHRP 2-R21 composite pavement initiative
History of RCA Use

- Minnesota, Michigan, Iowa, Illinois, and Texas pioneers of using RCA in PCC pavements in the early 1980s, however
 - Texas suspended using RCA in its PCC pavements
 - Minnesota relegated RCA to base layers/pipe trenches in the early 1990s
- European experience from late 1980s
 - Austrian standard practice is to recycle existing rigid pavement into new concrete/concrete composite pavements.
 - Germany & others also beginning to use RCA
- Other European countries, Japan, and Korea have published lab studies of RCA but little mention of field study

21st Annual Transportation Research Conference
RCA Concrete Characteristics

• Strength of RCA concrete compared to conventional aggregate concrete:
 □ **Compressive** strength of RCA concrete is typically less
 □ **Flexural** strength of RCA concrete is usually greater
 □ **Tensile** strength of RCA concrete is usually similar

• Shrinkage

• Durability
Why Aren’t More States Using RCA?

• Cost is greater to recycle than to mine and haul virgin aggregates
• Lack of quality rigid pavements that are at the end of their useful life
• Aggregate supplies are not in danger of depletion in the near future
• Adequate landfill space
• Recycling concrete is not a familiar practice for engineers or contractors
Why Aren’t More States Using RCA?

Information to help you feel more comfortable designing, specifying, and producing concrete with Coarse RCA

21st Annual Transportation Research Conference
Multiple sources good for base

21st Annual Transportation Research Conference
RCA Origin

Single source good for RCA

21st Annual Transportation Research Conference
RCA Origin

Multiple source

Single source

21st Annual Transportation Research Conference
Sieve with adjustable screen size

Washing the aggregate to remove fines

RCA Production

21st Annual Transportation Research Conference
European studies showed that RCA could contain 10-20% bituminous particles without significant loss of concrete strength.
• Specify a maximum and a minimum aggregate size controlled by setting of crushers and screens
• Maximum size should be one sieve-size less than the maximum size in existing concrete
• Sizes in-between can sometimes be controlled with screens
• The smaller the maximum size, the more fines are produced
• Wash coarse RCA for less variability of water demand
AGGREGATE ABSORPTION!

From database of RCA concrete:

- Conventional coarse aggregate absorption ranged from 0.3-2%
- Coarse RCA absorption ranged from 1.5 to 8%
- Recent single source coarse RCA absorption measured by the U of M:
 - 1.5-2.0% (Airport)
 - 0.8-1.5% (I-94)
Saturate aggregate and allow to air dry before putting it into the mix

- Aggregate should not give or take water
- Avoids variability of workability between batches
- Not all ready mix plants and/or contractors are equipped to do this
 - source of water
 - run-off
Wild Card

- From database, fine RCA absorptivity ranged between 5.4% and 15.8%
- Sand and Mortar particles
 - Mortar particles can hydrate
- From others’ research
 - Partial fines replacement successful with the addition of a fly ash or silica fume
- Research underway to understand how to accommodate this absorptivity
Guidelines for RCA Use in New Concrete

- **Golden Rule:** Use a single source for RCA used in new concrete
- **Silver Rule:** The absorption of recycled concrete aggregates requires attention
- Wash fines from coarse aggregate for more consistent workability
- Limit the max size of RCA to one sieve size lower than the max size of aggregate in existing concrete
Thank you
Concrete Over Concrete Composite Pavement

• A part of the Strategic Highway Research Project (SHRP-2) R21 project entails concrete/concrete composite pavement research
• Modeled after EU practice standard since the 1950s
• Want to import technology

Source: Derek Tompkins, 2008 European Roads Tour
Concrete Over Concrete Composite Pavement

- Avenue for in-place concrete recycling
- Quick replacement
- Typical U.S. one-layer pavements not as resource efficient
- Durable
- Accommmodates heavy traffic
- Low maintenance