Urban Form and Air Pollution in US Urban Areas

Center for Transportation Studies Research Conference
May 25, 2011

Lara Clark, Dylan Millet, Julian Marshall
Department of Civil Engineering
University of Minnesota

Grant No. 0853467
Air Pollution Impacts on Health

- Ozone
- PM$_{2.5}$
- PM$_{10}$
- Lead
- Nitrogen Dioxide (NO$_2$)
- Carbon Monoxide (CO)
- Sulfur Dioxide (SO$_2$)
- One or more pollutant

Millions of People

EPA, 2010
Urban Form Impacts on Air Quality

- Travel behavior
- Land cover
- Building design
- Distributions of land use
Purpose: Explore relationship between air pollution and urban form using empirical data

Research Questions: Is air pollution correlated to urban form? If so, at what magnitude?
Methods

• Stepwise linear regression

• Cross-section of 111 US urban areas
 • Year-1990
 • 38% of US population
 • 1% of US land area
Independent Variables

Urban Form: City Shape, Jobs-Housing Imbalance, Population Centrality, Population Density, Road Density (Bento et al., 2005)

Climate: Temperature, Dilution Rate

Transportation: Transit Supply, VMT

Other Urban Characteristics: Income, Size, Region

Dependent Variables

Air Pollution: Long-term population-weighted concentrations of ozone, fine particulate matter (PM$_{2.5}$), and a long-term air quality index (LAQI)
Urban Form Variables

City Shape

Jobs-Housing Imbalance

Population Centrality

Population Density

Road Density

Wichita, KS

Scranton, PA
Urban Form Variables

City Shape

Jobs-Housing Imbalance

Population Centrality

Population Density

Road Density

Salt Lake City, UT

Akron, OH
Urban Form Variables

City Shape

Jobs-Housing Imbalance

Population Centrality

Population Density

Road Density

Worcester, MA

Atlanta, GA
Urban Form Variables

City Shape

Jobs-Housing Imbalance

Population Centrality

Population Density

Road Density

Miami, FL
2,000 persons km2

Melbourne, FL
500 persons km2
Urban Form Variables

City Shape

Jobs-Housing Imbalance

Population Centrality

Population Density

Road Density

Las Vegas, NV

Huntsville, AL
Regression Results: Statistical Significance

<table>
<thead>
<tr>
<th>Urban Form</th>
<th>Ozone</th>
<th>PM$_{2.5}$</th>
<th>LAQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs-Housing Imbalance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Centrality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Urban Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive association

- $p < 0.01$
- $p < 0.05$
- $p < 0.10$
- $p > 0.10$

Negative association

- $p < 0.10$
- $p < 0.05$
- $p < 0.01$
Regression Results: Magnitude

Percent change in air pollution concentrations per interquartile range increase in independent variable

Urban Form	Transportation	Climate	Other
Population Centrality | Population Density | Transit Supply | Dilution Rate | Temperature | Region
Ozone | PM$_{2.5}$ | LAQI
-20% | -10% | 0% | 10% | 20% | 30%
Increasing population centrality across the interquartile range (for example, from Toledo to Albany levels) is associated with:

- decrease in ozone concentration by 2.9 ppb
- decrease in PM$_{2.5}$ concentration by 1.3 μg m$^{-3}$
Conclusions

• Air pollution correlates to urban form, after controlling for climate, transportation, income, size, and region

• Air pollution correlates to urban form with similar magnitude as climate

• Population density and population centrality are associated with air quality in opposing directions

• Need for greater understanding of the relationship between urban form and air pollution