PERFORMANCE OF DRAINAGE DITCH IN INFILTRATING STORMWATER RUNOFF

Farzana Ahmed
Graduate Student
Department of Civil Engineering, U of MN
May 23rd, 2012

Co-Authors:
John S. Gulliver, Department of Civil Engineering, U of MN
John L. Nieber, Bioproducts and Biosystems Engineering, U of MN
Overview

• Infiltration measurements on swales
• Results of statistical analysis of the data
• Application of infiltration measurement
 ü 1 inch 24hr storm for dry soil
 ü 1 inch 24hr storm for wet soil
 ü 2.6 inch 24hr storm wet soil
• Conclusion
Infiltration measurements on swales

<table>
<thead>
<tr>
<th>Swale location</th>
<th>Soil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwy 77</td>
<td>Loamy sand</td>
</tr>
<tr>
<td>Hwy 47</td>
<td>Loamy sand/ Sandy loam</td>
</tr>
<tr>
<td>Hwy 51</td>
<td>Loam/ Sandy loam</td>
</tr>
<tr>
<td>Hwy 212</td>
<td>Silt loam/ Loam</td>
</tr>
<tr>
<td>Hwy 13</td>
<td>Loam/ Sandy clay loam/ Silt</td>
</tr>
</tbody>
</table>
Method of Infiltration Measurement

Modified Philip Dunne Infiltrometer
Spatial variation of Infiltration at Hwy 212
Results for other hwys

<table>
<thead>
<tr>
<th>Location</th>
<th># of measurement</th>
<th>Geometric mean K_{sat} (cm/hr)</th>
<th>Co-efficient of variance</th>
<th>Soil type at different depth</th>
<th>Typical K_{sat} for this soil type(cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwy 47</td>
<td>18</td>
<td>2.14</td>
<td>1.54</td>
<td>Loamy sand</td>
<td>2.99 1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy loam</td>
<td></td>
</tr>
<tr>
<td>Hwy 212</td>
<td>19</td>
<td>0.96</td>
<td>1.90</td>
<td>Silt loam</td>
<td>0.65 0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loam</td>
<td></td>
</tr>
<tr>
<td>Hwy 13</td>
<td>18</td>
<td>2.22</td>
<td>1.26</td>
<td>Loam</td>
<td>0.34 0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy clay loam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silt loam</td>
<td></td>
</tr>
<tr>
<td>Hwy 77</td>
<td>15</td>
<td>2.83</td>
<td>0.89</td>
<td>Loamy sand</td>
<td>2.99</td>
</tr>
<tr>
<td>Hwy 51</td>
<td>19</td>
<td>3.33</td>
<td>1.06</td>
<td>Loam</td>
<td>0.34 1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy loam</td>
<td></td>
</tr>
</tbody>
</table>

- Geometric mean is within 1~3cm/hr.
Results for other hwys

<table>
<thead>
<tr>
<th>Location</th>
<th># of measurement</th>
<th>Geometric mean K_{sat} (cm/hr)</th>
<th>Co-efficient of variance</th>
<th>Soil type at different depth</th>
<th>Typical K_{sat} for this soil type (cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwy 47</td>
<td>18</td>
<td>2.14</td>
<td>1.54</td>
<td>Loamy sand, Sandy loam</td>
<td>2.99, 1.09</td>
</tr>
<tr>
<td>Hwy 212</td>
<td>19</td>
<td>0.96</td>
<td>1.90</td>
<td>Silt loam, Loam</td>
<td>0.65, 0.34</td>
</tr>
<tr>
<td>Hwy 13</td>
<td>18</td>
<td>2.22</td>
<td>1.26</td>
<td>Loam, Sandy clay loam, Silt loam</td>
<td>0.34, 0.15, 0.65</td>
</tr>
<tr>
<td>Hwy 77</td>
<td>15</td>
<td>2.83</td>
<td>0.89</td>
<td>Loamy sand</td>
<td>2.99</td>
</tr>
<tr>
<td>Hwy 51</td>
<td>19</td>
<td>3.33</td>
<td>1.06</td>
<td>Loam, Sandy loam</td>
<td>0.34, 1.09</td>
</tr>
</tbody>
</table>

- High coefficient of variance.
Results for other hwys

<table>
<thead>
<tr>
<th>Location</th>
<th># of measurement</th>
<th>Geometric mean K_{sat} (cm/hr)</th>
<th>Co-efficient of variance</th>
<th>Soil type at different depth</th>
<th>Typical K_{sat} for this soil type(cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwy 47</td>
<td>18</td>
<td>2.14</td>
<td>1.54</td>
<td>Loamy sand, Sandy loam</td>
<td>2.99, 1.09</td>
</tr>
<tr>
<td>Hwy 212</td>
<td>19</td>
<td>0.96</td>
<td>1.90</td>
<td>Silt loam, Loam</td>
<td>0.65, 0.34</td>
</tr>
<tr>
<td>Hwy 13</td>
<td>18</td>
<td>2.22</td>
<td>1.26</td>
<td>Loam, Sandy clay loam, Silt loam</td>
<td>0.34, 0.15, 0.65</td>
</tr>
<tr>
<td>Hwy 77</td>
<td>15</td>
<td>2.83</td>
<td>0.89</td>
<td>Loamy sand</td>
<td>2.99</td>
</tr>
<tr>
<td>Hwy 51</td>
<td>19</td>
<td>3.33</td>
<td>1.06</td>
<td>Loam, Sandy loam</td>
<td>0.34, 1.09</td>
</tr>
</tbody>
</table>

- No correlation between geometric mean and K_{sat} for that type of soil for these swales
Application of infiltration measurement

- Green Ampt model was used.
- Area: 10% of the impervious area.
- A horizontal x-section of the swale was chosen.
- Comparison between 1 inch 24hr storm and 2.6 inch 24hr storm.
- Wet and dry soil.
Estimating infiltration capacity

Average water holding properties of soil based on texture
How to translate soil suction from dry to wet condition

\[\psi = \frac{1}{K_{sat}} \int_0^h K(h) \, dh \]

\[K(h) = K_{sat} S e^{1/2} [1 - (1 - (1 - S e^{1/m})^m]^2 \]

\[S e = [1 + (\alpha h)^n]^{-m} \]

\[m = 1 - \frac{1}{n} \]

\[\psi = \text{Soil suction, } \alpha \text{ and } n = \text{VG parameter, } \]

\[K_{sat} = \text{Saturated hydraulic conductivity, } \]

\[K(h) = \text{Unsaturated hydraulic conductivity} \]
Estimating infiltration capacity

- 0.15 cm/hr
- 123 cm/hr
- 20 cm/hr
- 0.02 cm/hr
- 6.7 cm/hr
- 6.6 cm/hr
- 1.9 cm/hr
- 0.76 cm/hr
Estimating total infiltration (1 inch 24hr storm - dry condition)

- 11.3 cm runoff
- 16.64 cm runoff
- 12 cm runoff
- 15.94 cm runoff
Estimating infiltration capacity
(1 inch 24 hr storm- wet condition)

- 3.8 cm runoff
- 24.2 cm runoff
- 16.3 cm runoff
- 0.6 cm runoff
- 11 cm runoff
Estimating infiltration capacity
(2.6 inch 24hr storm - wet condition)

3.6 cm runoff
69 cm runoff
19.3 cm runoff
43 cm runoff
10.3 cm runoff
Conclusions

• Establishment of infiltration testing protocol is on-going process which needs verification.
• Testing and refining the protocol is needed.
• Calculation of infiltration capacity of a swale in dry and wet soil condition for various storm return periods will be included in the protocol and verified.
Conclusions

• Most of the stormwater runoff infiltrates through the side slope of the swale.
• Sediments accumulate at the center of the swale.
• No surrogate for measuring infiltration rate.
Acknowledgements

• Minnesota Pollution Control Agency (MPCA)
 – Bruce C. Wilson, Project Manager
• Local Road Research Board (LRRB)
 – Barbara Loida, Technical Liaison
• Minnesota Department of Transportation (MnDOT)
• St. Anthony Falls Laboratory (SAFL)
• Prof. John Gulliver and Prof. John Nieber
• Undergraduate researchers:
 - Anne Haws and Bradley Weiss