Measuring Managed Highways
Emerging Tools for the Emerging Roadway System

Steve Wilson, SRF Consulting Group, Inc.

Presented to University of Minnesota Center for Transportation Studies 22nd Annual Conference
May 24, 2011
Role of Models

• Provide technical information for planning and design

• Evolving from system construction and expansion

• Evolving to managing system refinements, operations and reconstruction
Evolving From

• In the past:
 – best roadway location
 – required number of lanes
 – long-term needs

• Can the tools currently being used provide useful information for the new types of decisions?
Evolving To

• In the future:
 – lane function
 – marginal benefits
 – operational changes
 – Short term

• What characteristics are needed for the new types of decisions?
Managed Lanes

- Dynamic speed management
- Priced dynamic shoulders
- HOV lanes
- HOT lanes
- Transit treatment
MANAGED LANE FORECASTING 101

• More Complex
 – Competition conditions

• More Data
 – Geometrical consideration/ speed deterioration
 – Time of day profiling

• Eligibility and Pricing Options
 – Operational demand management
 – Revenue generation?
Modeling 101

- Activity generates demand
- Choice modeling of origin-destination patterns and mode
- Time-of-day modeling
- Route assignment
Shortcomings of Static Model

- Demand will still be assigned onto network
- V/C ratios do not reflect queuing and potential bottlenecks
- V/C ratios do not affect upstream links
- Travel demand model cannot “back up” traffic from an overcapacity link
- Traffic flow may not be affected by downstream congestion
Static Assignment: Instantaneous
What is Dynamic Traffic Assignment (DTA)?

- Mesoscopic traffic assignment
- Not Macroscopic (planning)
- Not Microscopic (operations)
What is Dynamic Traffic Assignment (DTA)?

- “Experienced” travel time
- Time-dependent
- Queuing
- “Spillback”/Blockages
- Speed/flow relationship
Traffic Flow Realism

![Graph showing the relationship between speed and v/c ratio, labeled as Travel Demand Model.](image-url)
What is it Good For (Applications)?

- Advanced practice travel demand models
- “High level” operations analysis
- Parallel/multiple corridor conditions
- Pricing/HOT/toll lanes
- System management alternatives
- Work zone planning
DTA Primer

<table>
<thead>
<tr>
<th></th>
<th>STA</th>
<th>DTA</th>
<th>MICRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading</td>
<td>Analytical</td>
<td>Meso Sim</td>
<td>Micro Sim</td>
</tr>
<tr>
<td>Shortest Path</td>
<td>Instantaneous</td>
<td>Time Dependent</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Link</td>
<td>Link/Lane</td>
<td>Lane/Turn</td>
</tr>
<tr>
<td>Resolution</td>
<td>Hour</td>
<td>Minute</td>
<td>Second</td>
</tr>
<tr>
<td>Solution</td>
<td>UE</td>
<td>DUE</td>
<td>Non-UE</td>
</tr>
<tr>
<td>Convergence</td>
<td>Unique</td>
<td>Non-Unique</td>
<td>Non-Unique</td>
</tr>
<tr>
<td>Speed</td>
<td>Static Average</td>
<td>Time Varying</td>
<td>Time Varying</td>
</tr>
<tr>
<td>Flow Model</td>
<td>VDF</td>
<td>Speed-Density</td>
<td>Car Following</td>
</tr>
<tr>
<td>Arrival Time Profile</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Tung & Chiu: Integration of DTA in a 4-Step Model Framework
Experienced/Time Dependent Paths

Source: A Primer for Dynamic Traffic Assignment, ADB30 Transportation Network Modeling Committee Transportation Research Board (2010)
What is it Good For (Applications)?

Multi-Resolution Modeling (MRM)

MACRO

- Static/Instantaneous Paths
- Region Wide
- Zonal Trips
- Analytical Equilibrium
- Demand Driven
- Planning/Forecasting

O/D

MICRO

- Static Paths
- Corridor/Intersection
- Individual Vehicles
- Simulation One-Shot
- Supply Driven
- Operational

- Dynamic/Time Varying Paths
- Subarea / Corridor
- Vehicle Platoons

- Simulation Equilibrium
- Supply Driven
- Planning/Operational

Tung & Chiu: Integration of DTA in a 4-Step Model Framework
Multi Resolution Modeling

- **Macro**
 - Regional Travel Demand Model
 - Converter
 - Network
 - OD Data

- **Meso**
 - Preliminary Regional DTA Model
 - Refine DTA Model:
 - Links
 - Lanes
 - Traffic Control
 - Signal Timing
 - Calibration/Validation
 - Final Regional DTA Model

- **Micro**
 - Detailed Operations Analysis
 - Network Alternatives

- **Converter**
 - Create Sub-Area Model
 - Regional Operations Analysis
 - Fine Tune
Multi Resolution Modeling

Macro
- Regional Travel Demand Model
 * Converter
 * Network
 * OD Data

Meso
- Preliminary Regional DTA Model
- Refine DTA Model:
 * Links
 * Lanes
 * Traffic Control
 * Signal Timing

Field Data
- Link Speeds
- Link Volumes
- Link Density

- Calibration/Validation
- Final Regional DTA Model
- Create Sub-Area Model
- Fine Tune

Micro
- Detailed Operations Analysis
- Network Alternatives

Converter
Multi Resolution Modeling

- **Macro**
 - Regional Travel Demand Model
 - Converter
 * Network
 * OD Data

- **Meso**
 - Preliminary Regional DTA Model
 - Refine DTA Model:
 * Links
 * Lanes
 * Traffic Control
 * Signal Timing
 - Calibration/Validation
 - Final Regional DTA Model

- **Micro**
 - Detailed Operations Analysis
 - Network Alternatives

- **Converter**
 - Create Sub-Area Model
 - Fine Tune

- **Regional Operations Analysis**
 - Field Data
 * Link Speeds
 * Link Volumes
 * Link Density
Vehicle Simulation Characteristics
Time-dependent/Responsive
Bottleneck
Queuing
Queuing
Queuing
Queuing
Why Isn’t Everybody Using it Now?

- Lack of Awareness
- Data Requirements for Validation
- Diverging Opinions on Theory
- Computer Processing
- Regional Development/Project Application
- Need
Twin Cities Experience

- I-35W and I-394 Corridor ICM Evaluation
- Ahead of market
- Growing pains
- Lesson to be learned: application readiness (regional not project)
System Level Capabilities
Numerous Packages Available

- CALIPER (TransCAD, TransModeler)
- CITILABS (Avenue)
- INRO (DYNAMEQ)
- PTV (VISSIM)
- McTRANS (DYNASMART/DYNUS-T)
- VISTA
- Paramics
- AIMSUN
- Others
A Primer for
Dynamic Traffic Assignment

ADB30 Transportation Network Modelling Committee
Transportation Research Board

2010
Federal Work Zone Safety and Mobility Rule

- Work zone impacts during construction
- Implement transportation management plans (TMPs)
- TMP strategies to manage the work zone impacts of a project.
- The TMP must consist of a TTC plan, and also address TO and PI
Federal Work Zone Safety and Mobility Rule

Quick Zone

- Spreadsheet-based, sketch level
- traffic delays
- average and maximum queue lengths
- facilitates tradeoff
- Evaluates construction schedule options
- Evaluates mitigation strategies

Dynamic Traffic Assignment

- Consistent with project modeling
- work zone-capable
- Queues, delays and diversions
- Analysis of Interim options
Conclusions

- System-level Analysis
- Some Management-level Problems
- Can be integrated with travel demand modeling
- Still resource-intensive
- Regional investment/corridor application
Questions?

Steve Wilson
763.249.6760