The Economics of Peer-to-Peer Car Sharing

 Presenter: Guangwen Kong
 Co-author: Saif Benjaarfar
 Xiang Li
 University of Minnesota
Sharing Economy: P2P Car Sharing

car sharing has become an increasingly popular trend

Share it

Car renter
Rent great cars from people nearby
Unlock 1,000's of cars from $5/hour.

Car owner
Share your car. Earn $10,000 per year.
Potential Benefits

- Reduce car ownership
- Reduce car usage
- Reduce affiliated resources, such as parking space, congestion
Research Questions

• How does sharing economy affect ownership and usage of resources?

• Does collaborative consumption always lead to greater sustainability (i.e., leads to lower ownership, lower usage, or both)?

• Who benefits most from collaborative consumption, those who own, those who rent, or the platform that matches owners and renters?
Literature Review

• Two sided market
Rochet and Tirole 2006; Parker and van Alstyne 2005; Eisenmann et al. 2006; and Mongell and Roth. 1991

• On-demand mobility systems
Schuijbroek et al. 2013; Raviv and Kolka 2013; Shu et al. 2013

• Lease v.s. Buying
Desai and Purohit 1998; Hendel and Lizzeri 2002; Johnson and Waldman 2003

• Social sharing of information goods
Bakos et al. 1999; Galbreth et al. 2012; Conner and Rumelt 1991; Takeyama 1994; Shy and Thisse 1999; Varian 2005
Main Features

- A consumer has exogenous usage type ξ and chooses to be either owner or renter.
- A renter pays price rate p for each unit of usage, and an owner pays commission γp to the platform.
- An owner can always use their own car and will be able to rent out the car with probability β when the car is not in use.
- A renter will successfully rent a car with probability α.
Peer-to-Peer Car Sharing

Car Owner:
- Car purchasing cost c
- Commission fee py to platform
- Moral hazard cost of renting out a car w

Car Renter:
- Price rate p to car owner
- Inconvenience cost d
Basic Model

- **Car Renter** \[\pi_r(\xi) = (u(\xi) - p\xi - d\xi)\beta \]

- **Car Owner** \[\pi_o(\xi) = u(\xi) - \alpha(1 - \xi)((1 - \gamma)p - w) - c \]

Car Renter \[\pi_r(\xi) \geq \pi_o(\xi) \]

Car Owner \[\pi_r(\xi) \leq \pi_o(\xi) \]

\[\pi_r(\theta) = \pi_o(\theta) \]
Matching Supply with Demand

• Supply
 \[D(\theta) = \int_{[0,\theta]} \xi f(\xi) d\xi \]

• Demand
 \[S(\theta) = \int_{[\theta,1]} (1 - \xi) f(\xi) d\xi \]

Balance supply with demand

\[\alpha S(\theta) = \beta D(\theta) \]

Measure of car utilization

\[\rho(\theta) = \frac{D(\theta)}{S(\theta)} \]

Estimate \(\alpha \) and \(\beta \) from \(\rho(\theta) \)

Then find the fixed point of

\[\pi_r(\theta) = \pi_o(\theta) \]

\[\alpha S(\theta) = \beta D(\theta) \]
Multi-server loss queueing system

G/G/S/S Queue Approximation

\[\alpha = \frac{\rho(\theta)}{1+\rho(\theta)} \]
the probability of renting a car out for an owner

\[\beta = \frac{1}{1+\rho(\theta)} \]
the probability of finding a car available for a renter
Exogenous Price: Equilibrium Results

- Ownership $\omega^* = 1 - \theta^*$
- Usage $q^* = \frac{1-\alpha^*\theta^*^2}{2}$

Increases with:
- price
- inconvenience cost

Decreases with:
- commission,
- fixed ownership cost
- moral hazard
Ownership is higher under collaborative consumption when p is large.

Ownership is higher under Collaborative consumption when p is high.

The threshold p_w decreases with c.
Usage is higher under collaborative consumption when \(p \) is large

\[
c = 0.3
\]

\[
c = 0.7
\]

Usage is higher under Collaborative consumption when \(p \) is high

The threshold \(p_q \) decreases with \(c \)
When is it more sustainable?

Higher ownership, higher usage

Lower ownership, lower usage

Price, ρ

Ownership cost, σ
Endogenous Price: private platform’s problem

\[\max_{p, \gamma} \pi(p) = \gamma p \alpha S(\theta) \]

subject to: \(\pi_o(\theta) = \pi_r(\theta) \)

\[\alpha = \frac{D(\theta)}{D(\theta) + S(\theta)} \]

\(\pi_o(\xi) \geq \pi_r(\xi) \) for \(\xi \geq \theta \)
\(\pi_o(\xi) \leq \pi_r(\xi) \) for \(\xi \leq \theta \)
\(\pi_o(\xi) \geq 0 \) for \(\xi \geq \theta \)
\(\pi_r(\xi) \geq 0 \) for \(0 \leq \xi \leq \theta \)
When is it more sustainable?
Endogenous Price: Social Welfare and Public Platform

\[
\max_{p, \gamma} \pi(p) = \text{total social welfare}
\]

subject to: \(\pi_o(\theta) = \pi_r(\theta) \)

\[
\alpha = \frac{D(\theta)}{D(\theta) + S(\theta)}
\]

\(\pi_o(\xi) \geq \pi_r(\xi) \text{ for } \xi \geq \theta \)

\(\pi_o(\xi) \leq \pi_r(\xi) \text{ for } \xi \leq \theta \)

\(\pi_o(\xi) \geq 0 \text{ for } \xi \geq \theta \)

\(\pi_r(\xi) \geq 0 \text{ for } 0 \leq \xi \leq \theta \)
Comparison: Public and Private Platform

Private platforms induce more ownership than public platforms.
Comparison: Public and Private Platform

Private platform charges a higher price ρ

![Graph showing the comparison between private and public platform prices. The graph indicates a higher price for the private platform as the fixed ownership cost, c, increases.](image)
Can Public Platform Implement Social Optimal?

• There exists $\bar{\gamma}(c)$ such that the public platform can implemental social optimal if

$$\gamma \leq \bar{\gamma}(c) = \frac{(1-\theta^s)^2}{\theta^s(2\theta^{s^2} - 2\theta^s + 1)}$$

$$p = \frac{\theta^s}{(1 - \gamma \theta^s)(2\theta^{s^2} - 2\theta^s + 1)}$$
Numerical Analysis: Monotonicity with d

- Both Social welfare and private platforms’ profit decrease with inconvenience cost d.

- Platform’s incentive to reduce inconvenience cost align with social welfare.
Numerical Analysis: Non-monotonicity with w

Social welfare decrease with moral hazard w.

Private platform’s profit decrease with moral hazard w when c is large.

Private platform’s profit is non-monotone with moral hazard w when c is small.

Social planer’s incentive to reduce moral hazard does not align with private platforms’!
Conclusion

• Collaborative consumption can induce higher ownership and higher usage and thus less sustainability.

• Public platform leads to lower ownership and usage than private platform, and can implement social optimal.

• The incentive of reducing moral hazard by a private platform is not aligned with social planner.