Biofuels and Transportation
Impacts and Uncertainties

Some Observations of a Reformed Ethanol Skeptic
Dr. Jerry Fruin-Professor, Department of Applied Economics
University of Minnesota, Ethanol and Renewable Fuels Economist
Aka-”Ethanol Skeptic”

UW-Extension
Ethanol Study Tour
June 18-19, 2001
Topics

• Why Biofuels
• Ethanol Economics
• Ethanol Transportation Equipment and Infrastructure Requirements
• Changes in US and Midwest Agriculture
• Impacts on US and World Grain Markets
• The Uncertainties of Cellulosic Ethanol
Why Biofuels?

• **National Security**
 • Reduce Imports of oil
• **Peak Oil**
 • Replace Fossil Resources
 • A Transitional Fuel
• **Trade Implications**
 • Balance of payment issues
• **Agricultural and rural resurgence**
 • Less government aid
 • Higher prices boost main street businesses
Why Biofuels?

- **Rural Development**
 - Economic Revival
- **Environment**
 - Reduce C, SOx, NOx emissions
- **Bio-refineries versus Oil Refineries**
 - Low cost
 - Fast Construction
 - Much Less pollution
 - Less Environmental Opposition
Policy History

- The US has subsidized corn based ethanol since 1978 with a subsidy ranging between 40 and 60 cents per gallon.
- The current federal subsidy is $.51 per gallon, and there are state subsidies as well.
- Minnesota has mandated year round ethanol use since 1993.
- A federal import tariff of $0.52 a gallon remains in place with minor exceptions.
- US Potential E-10 demand is 14 billion gallons (the blend wall)
Policy History

• Energy Policy Act of 2005 (EPA05) establishes Renewable Fuels Standards (RFS)
• EPA05 requires 4 billion gallons of ethanol in 2006 increasing to 7.5 Billion gal in 2012
• RFS standard is based on current year production
• 2007 RFS standard is 4.02 % and will increase next year
• All “Obligated Parties” must meet RFS standard established by EPA each year

• 2007 State of the Union Address
 35 billion gal of alternative fuels in 2017 including 20% of gasoline use from renewable sources
RFS Credit Arbitrage

• All “Obligated Parties” must meet RFS standard established by EPA each year
• 2007 standard is 4.02 %
• “Obligated Parties” can buy RFS credits from others who use more than standard
• Facilities in EPA attainment areas can buy credits on paper and avoid transportation (and other costs)
Implications and Outlook
Source: WASDE 7

14 B gal of ethanol requires 500 million Bu of corn
Crop Acreage and Production Responses

- US corn acreage increased almost 20% from 2006 to 2007.
- Corn production increased 25% from 10.6 billion bushels in 2006 to 13.2 billion bushels in 2007.
- Most of the increase in corn acres came from soybeans plantings which decreased by 16% and cotton which decreased by 28%.
- Corn exports remain high because of demand and the weak dollar.

Source: Profarmer 4/14/07 and
Implications for Roads and Congestion

• More grain from farm to first handler because corn yields are three times soybeans
• Longer hauls when corn bypasses local elevator to ethanol plant
• Changes in local market patterns
• Changes in export routes and quantities
Ethanol Economics
• Ethanol has value as an ADDITIVE to gasoline and as ENERGY
 – It has additive value as an octane enhancer since it’s octane is 112 compared to 87 for regular gasoline
 – It has additive value as an oxygenate for reducing air pollution replacing MTBE
 – The additive value averaged 25 cents per gallon over the past 7 years but could fall to zero
 – About half of US gasoline is now a 10% blend
 – The ENERGY content value is about 68% of gasoline
Minneapolis Gasoline and Ethanol Prices 2005-2007

Price per gallon

- Ethanol
- Gasoline
- Ethanol less $.51

Dates:
- 2/11/2005
- 4/11/2005
- 6/11/2005
- 8/11/2005
- 10/11/2005
- 12/11/2005
- 6/11/2006
- 10/11/2006
- 12/11/2006
- 6/11/2007
- 8/11/2007
Conclusion

• The ethanol market price is now primarily based on its energy content (68% of gasoline) and the federal subsidy. This will probably continue.

Question

• Is the Ethanol Boom over??
Corn Break-even

Source: WASDE 10
Will the Industry Stabilize

• Current federal subsidy is $.51 a gallon
• Expires 12/31/2010
• Shift to a variable subsidy tied to price of crude oil
• Pay increasing subsidy as crude oil prices declines below $50 ??
Basic Location Theory
With Equal Transportation Costs
Where to Locate Plant

• If Process is weight losing – Produce at raw material source
• If Process is weight gaining and /or product is perishable - produce at the market
Basic Location Theory
With Equal Transportation Costs
Where to Locate Plant

• Ethanol Production is weight losing
 • 1 Bu corn weighs (56 pounds) and Yields
 • 2.8 gal ethanol (19 pounds)
 • (DDGS) (18 pounds)
 • CO2 Liquids (19 Pounds)
Corn for Grain, Harvested Acres: 2002

United States Total
68,230,523
Existing & Planned U.S. Corn Processing Plants

Data are from Terry Francel at AFBF, Press releases, and Renewable Fuels Association.
Impacts of Minnesota Doubling of Ethanol Production
2006 170 mil bu for ethanol 650 mil bu exported
2008 353 mil bu for ethanol 590 mil bu for export

MN Corn Utilization (2006)
Corn Production: 1.13 billion bushels

- Residual Use: 8%
- Feed Use: 17%
- Ethanol Use: 15%
- Other Processing: 3%
- Export: 57%

Source: PRX and MDA

MN Corn Utilization (2008 Projection*)
Corn Production: 1.31 billion bushels

- Residual Use: 10%
- Feed Use: 15%
- Ethanol Use: 27%
- Other Processing: 3%
- Export: 45%

Based on PRX data and MDA estimates
DDGS
Distillers Dried Grains and Solubles

- Mid-level protein feed
 Lacking the amino acid balance of soybean meal
- 28% Crude Protein
- Feed value higher than corn
- Poorer bulk density than corn
- Perishability and transportation issues
Ideal Location

• Have Feedlot Next to Ethanol plant so DDGS have no transportation costs
Moving DDGS Long Distances

• Rail capacity is a short run constraint
• Can ship dry DDGS in 5700 CF grain hopper cars
• Weight penalty -- DDGS bulk density less than corn and beans
• Railroad owned hopper cars not permitted for DDGS because of flow issues.
• New larger cars with wider hopper doors will become the standard but have long manufacturing lead times.
Ethanol Transportation Implications

- 90% of the ethanol production capacity is in 8 Midwestern States
- 80% of the US population (and implied ethanol demand) lives along its coastlines
- Transportation costs are typically the 3rd largest producer expense after feedstock and energy
- Ethanol Movement by Mode in 2005
 - Rail 60%
 - Trucks 30%
 - Barge 10%
 - Pipeline 0%
Why No Pipeline Movements?

- Corrosion Issues
- Adherence to water
- Small volumes (less than 5% of gasoline to date) make dedicated lines relatively uneconomic
- Dispersed origin locations
Pipeline Movements Will Evolve

- Growing total volume of ethanol
- Clustering of plants in Midwest
- Probably small dedicated lines
- Solutions to the corrosion and contamination issues are under investigation
Rail Transportation Issues

• Limited number of blenders who can take 100 (or 30 car trains)
• Many plants located on short lines
• Tank cars -30,000 gal Capacity
• $95000 per car ($9.5M per 100 car train)
• Two year wait list
Impacts on US and World Grain Markets

- Substitution of DDGs for feed grains in world export markets
- High prices will boost grain production in many regions of world
- More soybean production in South America (and further loss of US soybean export markets)
- Expansion of sugarcane ethanol in Brazil and elsewhere
- Development of a world biofuels market
Cellulosic Ethanol
Solution or Bottomless Subsidy Pit?

• At least 2 and possibly 4 pilot plants are being developed with large amounts of government aid

• Possible feed stocks include
 - Corn stover (and/or corn cobs)
 - Prairie grasses
 - DDGS
 - Forest residues

• Major storage and Handling Issues
 (Consequently in-plant burning as processing fuel is quite likely)
Thank You

Questions??

Jerry Fruin
612 625 8720
fruin001@umn.edu
Major Countries with Ethanol Fuels

- **U.S.** – likely production of 14-15 bil. gal. from corn in 3.5-5 years
- **Brazil** – 89 new ethanol plants to be built, 2007-2011
 - 2% biodiesel mandate by 2008 & 5% by 2013
- **China** – 3 corn-based plants, emphasis shifting to other feedstocks
- **EU-27** – 5.75% of motor fuel to be renewable by 2010, 10% in 2020
- **Canada** – 5% ethanol mandate by 2010, 2% biodiesel by 2012
- **Thailand** – ethanol from sugar, mantiac

Biodiesel – Competition for crop land
Minimum Soy Oil Price for Biodiesel Break-even at Given World Crude Oil Price

<table>
<thead>
<tr>
<th>Crude Oil Price, $/bbl</th>
<th>$30.00</th>
<th>$35.00</th>
<th>$40.00</th>
<th>$45.00</th>
<th>$50.00</th>
<th>$55.00</th>
<th>$60.00</th>
<th>$65.00</th>
<th>$70.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean</td>
<td>$0.19</td>
<td>($0.10)</td>
<td>$0.02</td>
<td>$0.14</td>
<td>$0.25</td>
<td>$0.37</td>
<td>$0.49</td>
<td>$0.61</td>
<td>$0.73</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.20</td>
<td>($0.18)</td>
<td>($0.06)</td>
<td>$0.06</td>
<td>$0.18</td>
<td>$0.30</td>
<td>$0.42</td>
<td>$0.54</td>
<td>$0.66</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.21</td>
<td>($0.25)</td>
<td>($0.13)</td>
<td>($0.01)</td>
<td>$0.11</td>
<td>$0.23</td>
<td>$0.35</td>
<td>$0.47</td>
<td>$0.58</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.22</td>
<td>($0.32)</td>
<td>($0.20)</td>
<td>($0.08)</td>
<td>$0.04</td>
<td>$0.15</td>
<td>$0.27</td>
<td>$0.39</td>
<td>$0.51</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.23</td>
<td>($0.39)</td>
<td>($0.28)</td>
<td>($0.16)</td>
<td>($0.04)</td>
<td>$0.08</td>
<td>$0.20</td>
<td>$0.32</td>
<td>$0.44</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.24</td>
<td>($0.47)</td>
<td>($0.35)</td>
<td>($0.23)</td>
<td>($0.11)</td>
<td>$0.01</td>
<td>$0.13</td>
<td>$0.25</td>
<td>$0.37</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.25</td>
<td>($0.54)</td>
<td>($0.42)</td>
<td>($0.30)</td>
<td>($0.18)</td>
<td>($0.06)</td>
<td>$0.05</td>
<td>$0.17</td>
<td>$0.29</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.26</td>
<td>($0.61)</td>
<td>($0.49)</td>
<td>($0.38)</td>
<td>($0.26)</td>
<td>($0.14)</td>
<td>($0.02)</td>
<td>$0.10</td>
<td>$0.22</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.27</td>
<td>($0.69)</td>
<td>($0.57)</td>
<td>($0.45)</td>
<td>($0.33)</td>
<td>($0.21)</td>
<td>($0.09)</td>
<td>$0.03</td>
<td>$0.15</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.28</td>
<td>($0.76)</td>
<td>($0.64)</td>
<td>($0.52)</td>
<td>($0.40)</td>
<td>($0.28)</td>
<td>($0.16)</td>
<td>($0.05)</td>
<td>$0.07</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.29</td>
<td>($0.83)</td>
<td>($0.71)</td>
<td>($0.59)</td>
<td>($0.48)</td>
<td>($0.36)</td>
<td>($0.24)</td>
<td>($0.12)</td>
<td>$0.00</td>
</tr>
<tr>
<td>Oil Price $/lb</td>
<td>$0.30</td>
<td>($0.91)</td>
<td>($0.79)</td>
<td>($0.67)</td>
<td>($0.55)</td>
<td>($0.43)</td>
<td>($0.31)</td>
<td>($0.19)</td>
<td>($0.07)</td>
</tr>
<tr>
<td>Soybean</td>
<td>$0.31</td>
<td>($0.98)</td>
<td>($0.86)</td>
<td>($0.74)</td>
<td>($0.62)</td>
<td>($0.50)</td>
<td>($0.38)</td>
<td>($0.26)</td>
<td>($0.15)</td>
</tr>
</tbody>
</table>

For Blue Sky Scenario, PRX adopts a crude oil price of $50/bbl and thus a minimum 24 cent/lb soy oil price, to evaluate impact of subsidized biodiesel market.

Source: Dr. Terry Franzel, American Farm Bureau Federation
Ethanol Demand Sources

- Oxygenates for air pollution 5.7%
- Octane Enhancers 7.5%
- BTU Substitutes 10-85%
- RFS Requirement 2007 4.02%
- RFS Requirement 2010 5.21%
- Exports