Statewide Network Screening for Safety Improvements

Brad Estochen
State Traffic Safety Engineer
Bradley.estochen@state.mn.us
651-234-7011
Outline

- Define Safety
- Safety Assessment
- Crash Rates
- Strategic Highway Safety Plan
- New Approaches to Assessing Safety
- Project Purpose and Needs
Definition of Safety

Everything we do is safety

Program specific

Project specific

Motor Vehicle Crashes
 Prevention
 Reduction
Definition of Safety

预防

识别与事故相关的项目
- 曲线
- 交叉口
- 道路段

风险管理

事故 = 不安全

无事故 = 安全
Definition of Safety

- Preventive
 - Identify items that are correlated to crashes
 - Curves
 - Intersections
 - Segments of roads
- Risk Management
 - Crashes = unsafe
 - No crashes = safe
Definition of Safety

Reduction

Apply treatments to locations with a known crash issue, focusing on incremental improvements to reduce crashes or risks associated with crashes.

- Bias to high severity crashes and crash types
 - Fatal and serious injury
 - Angle Crashes
 - Run of Road, Head On Crashes

- Secondary bias to large number of crashes
Safety Assessment

- Traffic Office “Green Sheets”
 - Crash Rates for comparable
 - Intersections
 - Segments of road
 - Statewide and District Averages

- Crash rates have shortcomings
 - Volume is a predictor of crashes (Highway Safety Manual)
 - Crash rates force a linear relationship
Linear Relationship

Number of Minnesotans Employed and Annual VMT
Linear Relationship?

![Graph showing Minnesota VMT and Traffic Fatalities](image)
What Crash Rates Don’t Tell You

What is the problem?
- Crash rate at an intersection exceeds average

What are we trying to fix?
- Angle Crashes?
- Rear End Crashes?
- Pedestrian Crashes?

Determine the safety need
Safety Assessment

- Top 200 Segments/Top 150 Intersections
- Ranked by crash costs
 - Per intersection
 - Per mile
- Costs assigned by severity of crashes
 - Fatal crash - $830,000 ($7,100,000)
 - Severe Injury - $415,000
 - Moderate Injury - $137,000
 - Possible Injury - $91,000
 - Property Damage Only - $12,000
AASHTO developed 22 emphasis areas for traffic crashes:

- Drivers
- Special users (Bike, Pedestrians, …)
- Vehicles (Trucks, motorcycles, passenger cars)
- Highway (intersections, lane departure, work zones, …)
- Emergency Medical Services
- System Management
4 E’s to Safety

- Engineering
- Education
- Enforcement
- Emergency Services
New Assessments

- Examine crash densities for emphasis areas
 - Lane Departure crashes
 - Intersection crashes
 - Alcohol related crashes
 - Seat Belt crashes
 - ... density emphasis areas
New Assessments

Examine crash distribution
- Crashes will happen, is it what we expect?

Bench mark against a normal crash distribution
- Overrepresentation of severe crash types
- Example: Traffic signals
 - Expect a reduction in right angle crashes
 - Expect an increase in rear end crashes
Methodology Application

- Interregional Corridors
 - 4 measures
 - Crash Density
 - Severe Crash Density
 - Severe Crash Type Density
 - Head On
 - Run Off Road
 - Angle Crashes
 - Driver Behavior Density
 - Alcohol related crashes
 - Unbelted Crashes
 - Speed related crashes
Purpose and Need?

- Crash rate does not identify safety deficiencies
- New assessments can provide objective basis for “safety”
- Stand alone safety needs are not usually substantial
 - 2008 highest crash cost location - $2 million annual cost
 - 60% costs are PDO crashes, 40% of costs are injury crashes
- Correlation between capacity and safety
Summary

- Crash Rates are part of the picture
- Need to examine where safety breakdown is occurring
- Things can be unsafe with a low crash rate
- Things can be safe with a high crash rate
- Leverage data to help make your case for safety improvements