Reader-Friendly Environmental Documents

Improving the way Washington DOT engages and informs the public and decision-makers

Carol Lee Roalkvam
Policy Branch Manager
Environmental Services Office

Douglas B. MacDonald
Secretary of Transportation

Paula Hammond
Chief of Staff

St. Paul, Minnesota
March 29, 2007
What’s the problem?

“Documents are much too cumbersome for either the public or decision-makers to identify relevant issues.”

— AASHTO/ACEC 2004 Joint Survey

“What is often lacking in EISs is not raw data, but meaning...expressed in clear, concise language. NEPA is about making choices, not endlessly collecting raw data.”

— Council on Environmental Quality
EIS’s can legally succeed and utterly fail

“Citizens' understanding of the EIS material was atrocious; on two measures of understanding, 70% of the participants answered correctly at a level no better than chance (blind guessing).”
— University of Illinois at Urbana-Champaign

“NEPA documents today are largely written (in unreadable language) for two constituencies: federal district court judges and federal agency permit-writers.”
— Doug MacDonald, WSDOT Secretary of Transportation
23 September 2002
Why develop reader-friendly documents?

• WSDOT is working to improve the quality of all documents and publications
 – Build public trust, increased time savings, faster reviews, more appropriate public comments

• Governor’s office requiring state agencies to communicate clearly (Executive Order on “Plain Talk” 05-03)

• People were getting overwhelmed
 – *Documents are much too cumbersome for either the public or decision-makers to identify relevant issues.*

 AASHTO/ACEC 2004 Joint Survey
The Reader-Friendly Approach to Environmental Documents

What were the results?

Why and How we developed it.

Washington State Department of Transportation
The Story

Our story begins in the heart of downtown Seattle along a 4 mile stretch of SR 99.
The Story

- SR 99 is a critical route, carrying 25% of Seattle’s thru traffic.
- SR 99 viaduct is deteriorating and vulnerable to earthquakes.
- 1930’s era seawall has been eaten by gribbles.
- Seawall failure would be catastrophic.
The project will improve public safety and shape regional transportation and downtown Seattle for the next 100 years.

Both facilities are critical to the region’s infrastructure; no action could be devastating.
A different approach was needed.
Back to Basics: NEPA

40 CFR 1500-1508: Most important, NEPA documents must concentrate on the issues that are truly significant to the action in question, rather than amassing needless detail. Emphasize the portions of the EIS that are useful to decision makers and the public.

40 CFR 1502.8: Environmental impact statements shall be written in plain language and may use appropriate graphics so that decision makers and the public can readily understand them.

40 CFR 1502.2: Environmental impact statements shall be analytic rather than encyclopedic.
(Re) Implementing NEPA

• Complete technical analysis contained in appendices to the EIS.
 – Draw conclusions

• The body of the EIS would contain information important to the decision.
 – More than a summary

• This approach creates a concise EIS that people can read and understand.
 – Not a data dump
 – Collect, analyze, and determine significance
Guiding lights

– **Joseph Williams** – Clear Writing
 Style: Ten Lessons in Clarity and Grace

– **www.plainlanguage.gov**

– **Edward Tufte** – Robust Graphic Design
 The Visual Display of Quantitative Information

– **NEPA regulations**
Developing the EIS

• Guiding Principles
 – Tell a story
 – Engage the reader
 – Make it visual
 – Make it brief
Tell a Story

How do you tell a story?

• Write clearly, use simple language.
 – To write clearly you must think clearly.
• Explain the problem and why people should care;
 – Make the reader a character in the story.
• Organize the document to tell a story.
Tell a Story
Make the reader a character in the story

Traditional EIS
Intersections that are projected to operate with especially long delays or overcapacity during the PM peak hour are identified as “congested intersections”. These intersections are those that operate under LOS F conditions (average vehicle delay of greater than 80 seconds) or ICU greater than 100 percent. Congested intersections are further identified as “highly congested” if they exceed 110 seconds of average vehicle delay and have an ICU of greater than 110 percent.

LOS, PM Peak, and ICU—meaningless terms to most readers.

Reader-Friendly EIS
What are congested and highly congested intersections?
Congested intersections are intersections that cause drivers considerable delay. A driver might wait between one and two minutes to get through a traffic signal at a congested intersection. At a highly congested intersection, a driver might wait two minutes or more to get through the traffic signal.

Explains drivers experience the problem.
Traditional EIS

1. **Alternative Description**
 - a) Structures
 - b) Design Standards
 - c) Illumination
 - d) Pedestrian and Bicycle Facilities
 - e) Construction

2. **Impacts and Mitigation**
 - a) Noise
 - b) Visual Quality
 - c) Land Use
 - d) Transportation

Reader-Friendly EIS

1. What is the alternative?
2. How would it be built?
3. How would it change access?
4. How would it affect travel times and traffic flow?
5. How would pedestrian and bicycles be affected?
6. What would it look like?
7. How would noise levels change?
8. How would it change the character and land use in the project area?
Engage the Reader

How do you engage readers?

• Use question and answer headings.
• Define terms and spell out acronyms.
• Avoid jargon.
• Use easy to read layouts to keep the reader from being overwhelmed.
Engage the Reader

Use Question and Answer Headings

<table>
<thead>
<tr>
<th>Traditional EIS</th>
<th>Reader-Friendly EIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose and Need</td>
<td>Why do we need the Project?</td>
</tr>
<tr>
<td>Project Termini and Why</td>
<td>Where is the project located?</td>
</tr>
<tr>
<td>They are Logical</td>
<td></td>
</tr>
<tr>
<td>Social and Community Impacts</td>
<td>How would the alternative affect neighborhoods and the people who live there?</td>
</tr>
</tbody>
</table>
Engage the Reader
Design for your reader

Explain the problem and why people should care.

The story of your project will be more interesting to the reader if they can immediately understand its purpose and why they should care about it. This is also an engaging way to present the purpose and need of your project. Every project is striving to fix some problem such as a safety issue,
9. Where are the people using the AWV Corridor coming from and going to?

The corridor primarily serves short regional trips and trips within the city of Seattle. Examples of regional trips served by SR 99 include trips from northwest Seattle neighborhoods to the Sea-Tac International Airport or trips from downtown to the cities of Shoreline or Burien. It provides access to West Seattle, South Park, downtown, Belltown, South Lake Union, Queen Anne, Magnolia, Ballard, and Fremont.

SR 99 parallels I-5, the most heavily used highway in the Pacific Northwest. I-5 is congested for many hours a day through downtown Seattle, and SR 99 is an important alternative route to, from, and through downtown. It is a major freight corridor providing access for businesses in the SODO and Duwamish industrial areas to northwest Seattle neighborhoods. The corridor is an important route for freight in the Ballard/Interbay manufacturing and industrial area. WSDOT classifies this section of SR 99 as a freight corridor carrying more than 10 million tons per year—the highest classification made. Also, SR 99 is an important link to Safeco Field, Seahawks Stadium, and Seattle Center.

Where are access points provided to and from SR 99?

Between S. Spokane Street and the Battery Street Tunnel, all access to SR 99 is provided via ramps. North of the Battery Street Tunnel, access is mostly provided by surface street connections. Exhibit 3-10 shows SR 99 access and ramp locations and the number of vehicles using these connections daily. The table below describes the connections.

10. What are typical travel times and traffic flow?

What are typical travel times and flows on SR 99?

For many trips, the afternoon commute is the busiest, so it is used to evaluate travel conditions. In most cases, conditions are better at other times of day. The Final EIS will also describe conditions during the morning commute. Typical travel times for key trips using the viaduct during the peak afternoon travel hour (4:00 to 5:00 p.m.) are shown below in Exhibit 3-12.

In general, traffic flows well during the typical afternoon commute, with less than an hour of congestion. Average speeds during the PM Peak are typically within 10 miles per hour of the posted speed limit, as shown in Exhibit 3-13. At times, northbound SR 99 traffic is slowed by traffic that backs up near the off-ramps to Seneca Street and Western Avenue.
Engage the Reader
Design for your reader
Engage the Reader
Design for your reader

CHAPTER 1 - INTRODUCTION

What's in Chapter 1?
Chapter 1 explores why the viaduct and seawall need to be replaced, who is funding the project, where the project is located, and why this assessment has been prepared. This assessment has been prepared for the following:

- New mitigation plans
- Changes to the proposed alternatives

1 Why was the Alaskan Way Viaduct and Seawall Replacement Project initiated?

The Alaskan Way Viaduct section of State Route (SR) 99 has been in service of the downtown Seattle waterfront for over six decades. Today, SR 99 is a primary roadway, running through Seattle covering 10 to 20 percent of the traffic travelling through downtown. However, the viaduct’s days are numbered. The 2001 Nisqually earthquake and wave and sea from their traffic have taken their toll on the facility.

In response to several large earthquakes in other parts of the world, Washington State Department of Transportation (WSDOT) began to study the viaduct in the mid-1990s. Those studies showed that the 1965 viaduct was vulnerable to earthquakes and causing the end of its useful life. In early 2001, a team of structural engineers began work to determine what to do about the viaduct. In the midst of this investigation, the Nisqually Nisqually earthquake struck the Puget Sound region.

The Nisqually earthquake, designed to viaduct, forced WSDOT to temporarily shut down. Post earthquake inspections of the viaduct by a team of experts revealed that the earthquake damaged the viaduct’s piers and columns, further weakening the structure and creating structural vulnerabilities, as shown in Exhibit 1.1.

Soon after the Nisqually earthquake, repairs were made to four viaduct sections in the Pension Square area near S. Washington Street, where the damage was most severe. WSDOT also imposed new restrictions that remain in effect today. These restrictions are for large vehicles such as trucks and buses that weigh over 10,000 pounds. These restrictions include reduced travel speeds for large vehicles (from 35 miles per hour to 15 miles per hour) and require large vehicles to use only the right-hand lane of the viaduct.

In 2001, WSDOT commissioned outside experts to complete a study evaluating the condition of the viaduct. The study found that the viaduct’s condition has worsened since the Nisqually earthquake. The earthquake-imposed structural failure on the viaduct will be used in designing the proposed new structure.

One of the most critical areas of the viaduct continues to affect the structural integrity of the viaduct today:

- Increasing cracks and crack widths - Cracks in the concrete structural support members of the viaduct continue to grow. These cracks grow when the reinforcing steel becomes corroded due to corrosion from the seawater and other factors.

Reducing and stabilizing the viaduct project today is designed to prevent slipage and sustain much greater loads than the reinforcing steel currently used in the 1960s.
Make It Visual

How do you make it visual?

• Include graphs, charts, and illustrations rich with information.
• Exclude tables unless they are truly helpful.
• Good graphics take time, planning, and thought.
 - Communicate a large amount of data quickly
 - Helps analysis
Make It Visual
How do you make it visual?

Exhibit 5-15. 2030 Corridor Travel Times

<table>
<thead>
<tr>
<th>Southbound</th>
<th>2002 Existing</th>
<th>2030 Existing Facility</th>
<th>2030 Rebuild</th>
<th>2030 Aerial</th>
<th>2030 Tunnel</th>
<th>2030 Bypass Tunnel</th>
<th>2030 Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>A uroa Bridge - Spokane Street</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Ballard Bridge - SR 519 (Stadium Area)</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>A uroa Bridge - Seattle Downtown</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Seattle Downtown - Spokane Street</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northbound</th>
<th>2002 Existing</th>
<th>2030 Existing Facility</th>
<th>2030 Rebuild</th>
<th>2030 Aerial</th>
<th>2030 Tunnel</th>
<th>2030 Bypass Tunnel</th>
<th>2030 Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spokane Street - A uroa Bridge</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>SR 519 (Stadium Area) - Ballard Bridge</td>
<td>16</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Seattle Downtown - A uroa Bridge</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Spokane Street - Seattle Downtown</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

* Estimated travel times shown in minutes.

These are tables/visuals often seen in most EISs.
Make It Visual
Bar Charts

These bar charts show the same information as the tables, only it is easier to show differences and similarities between alternatives.

Readers can draw their own conclusions.
Make It Visual
Tables vs. Maps

Exhibit 5-26. Congested Intersections by Sub-area

<table>
<thead>
<tr>
<th>Sub-area</th>
<th>2011 Existing</th>
<th>2013 Existing Facility</th>
<th>Round</th>
<th>Aerial</th>
<th>Tunnel</th>
<th>Business Tunnel</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate/Congested</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Highly/Congested</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Congested Intersections</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate/Congested</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Highly/Congested</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Congested Intersections</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>North</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate/Congested</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Highly/Congested</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Congested Intersections</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate/Congested</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Highly/Congested</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Congested Intersections</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate/Congested</td>
<td>12</td>
<td>12</td>
<td>22</td>
<td>25</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Highly/Congested</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Congested Intersections</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

This map shows the spatial pattern in the data.

This table lacks spatial context.
Make It Visual

Use pictures instead of a table to make comparisons

Typical EIS Summary of Impacts Table

<table>
<thead>
<tr>
<th>Operation</th>
<th>Potential Impacts</th>
<th>Mitigation Considered but Not Carried Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program IV, Geology and Soil</td>
<td>Erosion and sedimentation, soil compaction, and groundwater contamination.</td>
<td>None</td>
</tr>
<tr>
<td>Construction</td>
<td>Increased water temperatures and thermal effects on aquatic life, downstream construction, and concentrated stormwater flows.</td>
<td>None</td>
</tr>
</tbody>
</table>

Devel. Features:
- Use stormwater facilities that reduce the risk of flooding in downstream areas.
- Implement additional water quality measures, such as wetlands and detention basins, to mitigate flooding impacts.
- Implement sedimentation control measures, such as silt fences and best management practices, to reduce sediment yields and downstream impacts.

Devel. Features:
- Use stormwater facilities that reduce the risk of flooding in downstream areas.
- Implement additional water quality measures, such as wetlands and detention basins, to mitigate flooding impacts.
- Implement sedimentation control measures, such as silt fences and best management practices, to reduce sediment yields and downstream impacts.
Make It Visual

Focus on the differences among alternatives

These visual simulations from the Supplemental Draft EIS show before and after states for the same place compared with the current view.
Make It Visual
Illustrated Graphs

Noise Levels for Each Alternative

Tunnel Noise Calculations at Spring Street

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
<th>Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 feet East of AWV</td>
<td>345</td>
<td>68.5</td>
</tr>
<tr>
<td>200 feet East of AWV</td>
<td>350</td>
<td>68.4</td>
</tr>
<tr>
<td>300 feet East of AWV</td>
<td>350</td>
<td>64.1</td>
</tr>
<tr>
<td>400 feet East of AWV</td>
<td>370</td>
<td>61.4</td>
</tr>
<tr>
<td>500 feet East of AWV</td>
<td>380</td>
<td>64.1</td>
</tr>
<tr>
<td>600 feet East of AWV</td>
<td>390</td>
<td>63.8</td>
</tr>
<tr>
<td>700 feet East of AWV</td>
<td>400</td>
<td>63.8</td>
</tr>
<tr>
<td>800 feet East of AWV</td>
<td>410</td>
<td>63.5</td>
</tr>
<tr>
<td>900 feet East of AWV</td>
<td>420</td>
<td>63.3</td>
</tr>
<tr>
<td>1000 feet East of AWV</td>
<td>430</td>
<td>63.2</td>
</tr>
<tr>
<td>1100 feet East of AWV</td>
<td>440</td>
<td>63.9</td>
</tr>
<tr>
<td>1200 feet East of AWV</td>
<td>450</td>
<td>64.0</td>
</tr>
<tr>
<td>1300 feet East of AWV</td>
<td>460</td>
<td>66.1</td>
</tr>
<tr>
<td>1400 feet East of AWV</td>
<td>470</td>
<td>62.9</td>
</tr>
<tr>
<td>1500 feet East of AWV</td>
<td>480</td>
<td>63.3</td>
</tr>
<tr>
<td>1600 feet East of AWV</td>
<td>490</td>
<td>63.1</td>
</tr>
<tr>
<td>1700 feet East of AWV</td>
<td>500</td>
<td>60.3</td>
</tr>
<tr>
<td>1800 feet East of AWV</td>
<td>510</td>
<td>61.8</td>
</tr>
<tr>
<td>1900 feet East of AWV</td>
<td>520</td>
<td>62.3</td>
</tr>
<tr>
<td>2000 feet East of AWV</td>
<td>530</td>
<td>60.7</td>
</tr>
<tr>
<td>2100 feet East of AWV</td>
<td>540</td>
<td>60.9</td>
</tr>
<tr>
<td>2200 feet East of AWV</td>
<td>550</td>
<td>59.1</td>
</tr>
<tr>
<td>2300 feet East of AWV</td>
<td>560</td>
<td>58.9</td>
</tr>
<tr>
<td>2400 feet East of AWV</td>
<td>570</td>
<td>58.3</td>
</tr>
<tr>
<td>2500 feet East of AWV</td>
<td>580</td>
<td>59.2</td>
</tr>
<tr>
<td>2600 feet East of AWV</td>
<td>590</td>
<td>57.8</td>
</tr>
</tbody>
</table>
Make It Brief
How do you make it brief?

- Lead agencies must focus on relevant information!
- Summarize information and conclusions
- Include detailed analyses with the EIS as appendices
 - Reference throughout the EIS
 - CDs for background information
Make It Brief

Initial text describing Construction Sequencing
Make It Brief
Construction text summarized in a chart

Construction Activities Chart

Shorter Construction Plan

Tunnel:
- Remove existing bridge
- Complete 4-lane tunnel for I-5
- Complete roadway improvements
- Build new bridge along the southbound
- Build new bridge along the northbound
- Bridge the transition from I-5 to Miller
- Complete roadway improvements

Intermediate Construction Plan

Stacked - 30 months

Tunnel:
- Remove existing bridge
- Complete 2-lane tunnel for I-5
- Complete roadway improvements
- Build new bridge along the southbound
- Build new bridge along the northbound
- Bridge the transition from I-5 to Miller
- Complete roadway improvements

Longer Construction Plan

Elevated Structure:
- Remove existing bridge
- Complete 2-lane tunnel for I-5
- Complete roadway improvements
- Build new bridge along the southbound
- Build new bridge along the northbound
- Bridge the transition from I-5 to Miller
- Complete roadway improvements
Make it brief and visual!

- Graphic helps reader to understand complex technical information
- A table or bar chart would not as effective
Brevity requires careful translation, citation

- Tools for the technical and legal reader
- Don’t forget NEPA audiences.
 - Legal requirements must be met.
- Develop tools for technical and legal reviewers.
 - Technical analysis
 - NEPA index
 - Annotated outline
Tools for the technical and legal reader

<table>
<thead>
<tr>
<th>TECHNICAL INDEX</th>
<th>Chapter 1 Introduction</th>
<th>Chapter 2 Project Description</th>
<th>Chapter 3 Alternatives</th>
<th>Chapter 4 Project Effects</th>
<th>Chapter 5 Noise/ESR</th>
<th>Chapter 7 Transportation Effects</th>
<th>Chapter 8 Other Things to Consider</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjek</td>
<td>17</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Administrative History</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
</tr>
<tr>
<td>Financial Impacts</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
<td>6-7</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
<td>4-5</td>
</tr>
<tr>
<td>Reference</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Provide an index similar to a traditional EIS outline.

Reader-Friendly
Environmental Documents
We provided an outline of the EIS, that was annotated, showing readers where they could find specific information required by federal, state and local regulations.
What’s really different about this approach?

<table>
<thead>
<tr>
<th>Typical EIS Approach</th>
<th>Reader-Friendly EIS Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collect data</td>
<td>1. Collect data</td>
</tr>
<tr>
<td>2. Analyze data</td>
<td>2. Analyze data</td>
</tr>
<tr>
<td>3. Assemble methodology, data, and analysis in report/EIS</td>
<td>3. Draw conclusion</td>
</tr>
<tr>
<td></td>
<td>4. Evaluate relevance</td>
</tr>
<tr>
<td></td>
<td>5. Design document to highlight key issues</td>
</tr>
</tbody>
</table>
Where are we now?

Federal support is growing
• Joint AASHTO/ACEC Report
 http://environment.transportation.org/pdf/IQED1_for_CEE.pdf

• Federal Highways Administration (FHWA) July 2006 memo

• Governor’s support = Plain Talk
What’s Happened Since 2004?

- WSDOT developed statewide guidance and implemented training
 - Reader-Friendly Document Tool Kit
 - Document Creator
 - WSDOT Statewide Training
 - Writing Training
- More reader-friendly documents every day
WSDOT’s New Documents

- I-90 Hyak to Easton Draft EIS Summary
- I-405 EA’s and Technical Reports
- I-5/116th Street NE Interchange EA
- 1-5/SR 502 Interchange Project
- SR 520 Technical Reports and Draft EIS (August 2006)
- Alaskan Way Viaduct Supplemental Draft EIS (July 2006)
Key Lessons

• Fundamental changes must be supported at the top
• Benefits - greater public understanding, more sophisticated comments
• Reviewers focused on substance – not editing
• Sense of mission and purpose
• Writing class is essential
Challenges

• Catching the teams early
• Training: Clear writing isn’t easy
• Good graphics take thought and time
• Pipeline projects
• Retooling information flow
• Bucking Tradition: *It just doesn’t look like an EIS*…
• Correcting myths and rumors
Contact Information

WSDOT Environmental Services

Carol Lee Roalkvam
(360) 705-7126
roalkvc@wsdot.wa.gov

Kathleen McKinney
(360) 705-7304
mckinnk@wsdot.wa.gov

WSDOT’s Toolkit is on-line
www.wsdot.wa.gov/Environment/ReaderFriendly.htm

Parametrix, Inc.

David Mattern
(425) 458-6200
dmattern@parametrix.com

Stephanie Miller
(253) 863-5128
smiller@parametrix.com
Extra-Credit Slides!
Reader-Friendly Document Workshops

Training and executive support reach all EAs and EISs

Used workshops statewide to explain:
 Why we developed it.
 How to implement it.
 What are the expectations.
What is the Reader-Friendly Document Tool Kit?

What it isn’t:

– A checklist
– A manual
– Static

What it is:

Guidance: How to create look and feel; Build clear, concise and relevant documents

Flexible: Customize to meet project’s needs

Evolving: It will continue to grow, include new examples, etc.
What is the Reader-Friendly Document Tool Kit?

• Chapter 1 = Background
• Chapter 2 = Key reader-friendly concepts
• Chapter 3 = Components of reader-friendly documents
• Chapter 4 = Tools for EISs and EAs
• Chapter 5 = Tools for discipline reports
• Chapter 6 = Tools for the review process
• Appendices = Writing and graphics tips, Document Creator, project examples, and management tools.
What are WSDOT’s expectations?

• Quality, readable documents – concise, plain English
• Brevity, focus on relevant issues
• Edit to ensure “one voice”
• Consistent look and feel
• Follow the model template Tool Kit style
 – Question and answer format
 – More use of white space and sidebars
 – Standards for graphics and maps
The Document Creator

Set of document templates in Microsoft Word

Programmed with special reader-friendly features