Current Issues in Environmental Review

Mn/DOT Environmental Stewardship and Streamlining Workshop

May 12, 2010
NEPA and Fiscal Constraint

Phil Forst, FHWA Environmental Specialist / Area Engineer
(651) 291–6110
phil.forst@dot.gov
NEPA and Fiscal Constraint

What is it?

A policy that clarifies when a final NEPA approval can be made in relation to specific transportation planning and air quality conformity regulations, with a particular emphasis on fiscal constraint.

Where did this come from?

FHWA issued nationwide policy
NEPA and Fiscal Constraint

Why was the policy issued?
- Ongoing, consistent theme of questions

Application

Key Components
- MTP (TPP) or Statewide Long Range Plan
- STIP/TIP
- Conformity
NEPA and Fiscal Constraint

What *may* this policy mean for Minnesota?
- PEL
- Reduced number of NEPA docs

Process
- Draft implementation guidance
- Vetting
- Issuing final implementation guidance
NEPA and Fiscal Constraint

Interim Process
 - Case-by-case

References
 - AASHTO Center for Environmental Excellence
 - http://www.environment.transportation.org
 => ‘Environmental Considerations in Planning’ => ‘Research, Documents, Reports’
Noise Policy

Phil Forst, FHWA Environmental Specialist / Area Engineer
(651) 291-6110
phil.forst@dot.gov
Noise Policy

History
- Federal policy last updated June 1995
- State noise policy last updated in 95/96

Examples of proposed changes
- Methodology for reasonable/feasible
- An increase in the min dBA for ‘substantial’ increase
- Third type of noise project
Noise Policy

Schedule

* NPRM issued September 2009
* New Fed policy issue: *Target* Summer 2010

What does this mean for Minnesota?

* Reconciling existing State policy with new Federal policy

References

* http://www.fhwa.dot.gov/environment/noise
* Mn/DOT Highway Project Dev. Process
Planning and Environmental Linkage

Dan Johnson, FHWA Resource Center
Environmental Program Specialist
(410) 962–0702
danw.johnson@fhwa.dot.gov
Planning and Environmental Linkage

- Represents an approach to transportation decision-making that considers environmental, community, and economic goals early in the planning stage and carries them through project development, design, and construction.

- Can lead to a seamless decision-making process that minimizes duplication of effort, promotes environmental stewardship, and reduces delays in project implementation.
Planning and Environmental Linkage (cont.)

- Who is Involved?
 - Transportation planners
 - NEPA practitioners
 - Resource agency staff involved in conservation planning or NEPA
 - Public
Planning and Environmental Linkage (cont.)

 - Available Training, webcasts
 - FHWA Peer Exchange on Using Corridor Planning to Inform NEPA
 - Summary Report, FHWA, December 31, 2009
 - examples from CO, PA, TX, ID, MT
Defining Logical Termini – a case study

This report concerns the sections the Pennsylvania Department of Transportation has used in planning and programming improvements for the US 202 Corridor in Pennsylvania, and whether these sections are the appropriate length and location for State and Federal environmental reviews required for US 202 improvements.
US 202 Logical Termini Criteria

- Rational end points for the project
- Rational end points for impact study
- Project serves a significant purpose by itself, even if related projects are not built.
- Doesn’t restrict alternatives for other reasonably foreseeable transportation improvements
- Isn’t a “loaded gun” forcing improvements with unforeseen impacts
Limited impacts on adjacent sections

Traffic volumes

- **Existing traffic (1990 AADT)**
- **Projected traffic (2010 AADT)**

<table>
<thead>
<tr>
<th>Sampling Location</th>
<th>Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>South of US 1</td>
<td>42 60</td>
</tr>
<tr>
<td>North of PA 3</td>
<td>63 80</td>
</tr>
<tr>
<td>North of US 30</td>
<td>57 72</td>
</tr>
<tr>
<td>South of I-76</td>
<td>105 119</td>
</tr>
<tr>
<td>North of Henderson Rd</td>
<td>43 54</td>
</tr>
<tr>
<td>South of Morris Rd</td>
<td>23 29</td>
</tr>
<tr>
<td>South of Bristol Rd</td>
<td>22 28</td>
</tr>
<tr>
<td>South of PA 263</td>
<td>17 24</td>
</tr>
</tbody>
</table>

Looking at typical current and projected traffic for each section shows the pronounced variations in conditions between sections. This also helps explain the practice of assessing needs, improvement opportunities, and impacts for each section individually.

Projected increases in traffic

<table>
<thead>
<tr>
<th>Difference between current and projected levels (in 000's/ day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 17 15 14 11 6 6 7</td>
</tr>
</tbody>
</table>

Estimates of traffic increases (the difference between current and future traffic levels, above) for each section show relatively little difference when shown side by side. This helps to show there is little likelihood of major increases in one section forcing improvements in the next section with unforeseen impacts.

Traffic estimates used here are from DVRPC's existing sources. Traffic studies for individual section improvements will provide more detailed information as they are completed, allowing continuous refinement of the regional traffic picture.
Section 400
PA 252 (Chesterbrook) to Gulph Road PA 363 (in Upper Merion)

Section description

Existing conditions:
This 5.0 mile, 4 to 6 lane expressway includes connections to two other expressways (US 422 and I-76 Schuylkill Expressway) and several other interchanges in the greater Valley Forge regional growth center. It hosts the highest traffic volumes, most complex traffic movements and the most extensive congestion in the entire US 202 corridor.

Improvements:
Environmental assessment and preliminary engineering is complete for:

- reconstruction of the US 202/I-76 and US 202/US 422 interchanges with direct interconnections between expressways
- widening of US 202 from 4 to 6 lanes
- upgraded interchanges, ramps and parallel service roads.

A major interchange upgrade has been recently completed in the Devon area.
Effects to the south

Rational end point for project limits?

PA 252 is a significant regional traffic route for the area, crossing and connecting into the US 202 corridor. As such, it is an appropriate point in defining discrete elements in the highway network.

Rational end point for impact studies?

Traffic increases on Section 400 may underscore the rationale and scheduling priorities for making Section 300 improvements, but they shouldn’t be seen as forcing this construction. PA 252 and development in the Chesterbrook area are significant destinations in themselves for Section 400 improvements.

Traffic impacts in Section 300 has been an integral part of all DVRPC traffic studies for Section 400, insuring these impacts are not unforeseen, “loaded gun” impacts.

Section 400

Is the project significant in itself?

The heaviest Section 400 improvements are located at the confluence of US 202, US 422, I-76, and the Pennsylvania Turnpike. They are shaped to help meet future traffic needs and to ease current traffic problems in the most heavily traveled and congested section in the corridor. Standing alone, they serve both local traffic and users of all related expressway routes and the overall regional highway network.

Does it restrict consideration of alternatives for reasonably foreseeable improvements?

Extension of the project termini are not seen as adding any reasonable options to the proposed improvements, which are already represent a comprehensive approach to upgrading the entire major highway complex in King of Prussia. Better traffic flow will also enhance potential mass transit and intermodal opportunities in the corridor.

Effects to the north

Rational end point for project limits?

Gulph Road (PA 363) is: 1) the eastern limit of the new US 202/I-76 interchange complex; 2) an important arterial element in the local street system surrounding the expressway network; and 3) a demarcation in traffic patterns and volumes and land uses, and in surrounding areas.

Rational end point for impact studies?

Traffic projections performed for the Section 400 include conditions in Section 500. The improvements should not obligate major improvements to DeKalb Pike north of PA 363 where traffic conditions in the previously widened section are more immediately influenced by King of Prussia congestion. Thus unforeseen “loaded gun” impacts are being avoided by Section 400 traffic studies.
Phasing in US 202 Corridor Improvements

<table>
<thead>
<tr>
<th>Section</th>
<th>Proposed improvements</th>
<th>Commonwealth Interim 12-year Transportation Program</th>
</tr>
</thead>
</table>
| 100 | • Upgrade US 202 from 4 to 6 lanes
 • Rebuild intersection with US 1
 • Local cooperation on land-use | | |
| 200 | • Widen Boot Road (EC)
 • New signalization at interchange
 • (Construction of the Exton Bypass) (EC) | | |
| 300 | • Rebuild PA 29 interchange
 • Widen to 6 lanes from US 30 to Pa 252 | | |
| 400 | • Upgrade US 202 from 4 to 6 lanes
 • Rebuild interchange with I-76/US422
 • Rebuild interchanges, service roads | | |
| 500 | • Rebuild DeKalb St. bridge (EC)
 • Routing improvements in Norristown (with US 202 - 600)
 • Schuykill Parkway (for relief of US 202) | | |
| 600 | • EIS for selective roadway widening, upgrade of key intersections | | |
| 700 | • EIS for new alignment, upgrade of US 202, or upgrade of parallel roads | | |
| 800 | • Improvements limited to replacement of Lahaska Creek Bridge (EC) | | |

Legend:
- Environmental and engineering studies
- Construction phase
- Right of way Acquisition
- Denotes Environmental Clearance

Time periods for environmental, engineering, right of way and construction tasks (shown as typical in this diagram) actually vary greatly by project.

Different projects in different sections have been initiated locally and have followed separate paths of project development. They also vary in terms of the appropriate environmental process involvement. The great range in timing between projects can be seen here.

This makes consolidation of EIS's across several sections unfeasible without premature acceleration of some studies coupled with simultaneous delay of others.
A consolidated EIS to cover several sections or even the corridor as a whole (theoretically a means to avoid segmentation) is seen to be both infeasible and counterproductive.

The great variety of conditions and needs along the corridor require a detailed scale of study needed to:

1) properly characterize localized conditions and impacts, and
2) develop effective improvements in such diversified situations.
Planning and Environmental Linkage

For more information:
Findings of 2009 Environmental Review Focus Groups

Jeanne Witzig, Kimley–Horn and Associates
Project Manager/Associate
(651) 643–0447
jeanne.witzig@kimley-horn.com
Other Topics

- Environmental Commitments
Other Topics

- Structurally Deficient Historic Bridges
Other Topics

- Purpose and Need
Which comes first?

PURPOSE

NEED(S)
Importance of Need and Purpose

- Provides critical foundation for successful decision-making
- Provides basis for evaluating reasonableness of alternative
 - Alternatives development and screening
 - Environmental analyses
- Project stakeholders have continued/increasing interest in P&N definition

The Importance of "Need and Purpose" in Environmental Documents, September 1990
Your Questions????

- Dan Johnson, *FHWA Resource Center*
- Phil Forst, *FHWA MN Division*
- Mary Bieringer, *Mn/DOT State Aid*
- Skip Spensley, *Spensley & Assoc*
- Jeanne Witzig, *Kimley–Horn*