Automated Driving Law and Policy

Bryant Walker Smith

Assistant Professor
University of South Carolina School of Law
and (by courtesy) School of Engineering

Affiliate Scholar Center for Internet and Society at Stanford Law School

https://en.wikipedia.org/wiki/File:Tessie_Reynolds_02.jpg

 $https://commons.wikimedia.org/wiki/File: State Lib Qld_1_95492_Out_driving_in_an_early_Linon_motor_car_in_lps wich.jpg$

Jaco A. Riis, A Ten Years' War: An Account of the Battle with the Slum in New York (1900), gutenberg.org

https://commons.wikimedia.org/wiki/File:SmogNY.jpg

 \sum (old problems) < \sum (new problems)

Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says

By BILL VLASIC and NEAL E. BOUDETTE JUNE 30, 2016

Lessons From the Tesla Crash

By THE EDITORIAL BOARD JULY 11, 2016

Inside the Self-Driving Tesla Fatal Accident

By ANJALI SINGHVI and KARL RUSSELL UPDATED July 12, 2016

As U.S. Investigates Fatal Tesla Crash, Company Defends Autopilot System

By BILL VLASIC and NEAL E. BOUDETTE JULY 12, 2016

A Lesson of Tesla Crashes? Computer Vision Can't Do It All Yet

Critical Reason for Crash Attributed to **Driver** (94%)

Who is responsible for a driverless car accident?

© 8 October 2015 Technology

Liability for accidents involving driverless cars is becoming a big issue worldwide

30 million uninsured drivers

\$30,000 per injury up to \$60,000

$\frac{$30,000}{$10,000,000} = 0.3\%$

https://www.amsa.gov.au/environment/protecting-our-environment/major-historical-incidents/Kirki/index.asp

SURROUNDINGS

Elimination of jobs in transportation and logistics. Disruption of medium-haul airline travel. Changing traffic patterns. Increase in sprawl. Redesign of urban areas. Reuse of parking lots. Reduced revenue streams for local governments. Expansion of educational mobility. Increase in child independence. Privatization of public spaces. Reduction in police interactions. Increased safety and mobility for bicyclists and pedestrians. Embrace of living streets. Rejection of living streets. Increasingly sedentary behavior. Corporate omniscience. Perfect enforcement of existing law. Overenforcement of existing law. Increase in systematic vulnerabilities. Disruption to crash economy. Reduction in organ donations. And so on.

Prepare Inform Clarify Restrict Promote

lawofthe newly Ossible newlypossible.org

Prepare

Develop a spectrum of scenarios with assumptions about impact and probability

Inform

Create a robust break-the-glass plan that anticipates and responds to a serious automated driving incident

Clarify

Specify that the user of a commercial automated driving service is not the driver or operator

Restrict

Mandate that any developer or deployer of an automated driving system file its 15-point safety assessment with NHTSA

Promote

Internalize the costs of driving through taxes, fees, insurance, and enforcement

How Governments Can Promote Automated Driving

Bryant Walker Smith, University of South Carolina School of Law | newlypossible.org | law.sc.edu/faculty/smith | cyberlaw.stanford.edu/bws

Public officials frequently ask what their governments can do to promote and attract automated vehicles. This poster previews potential state and local strategies, some of which may also have national relevance. As the color coding below indicates, the different technologies and applications that constitute automated driving may demand different strategies:

Paths to fully automated driving

Color key for each individual strategy

"Something Everywhere"

Increasing capability of advanced emergency intervention systems (AEIS)
 Increasing capability of advanced driver assistance systems (ADAS)

Primarily promotes AEIS/ADAS

A legal audit should identify and analyze every statute and regulation that could

apply either adversely or ambiguously to automated driving. Automated Vehicles Are

Probably Legal in the United States identifies many such provisions, from general

requirements of prudent conduct to the specific New York rule that a driver must

keep at least one hand on the wheel. Because vehicle codes, insurance rules, and

other relevant laws vary by jurisdiction, merely enacting a uniform "automated

driving law" without reference to these nuances could confuse as much as clarify.

If advancements in vehicle technologies ultimately compel novel registration or

face. Reciprocity—or even unilateral recognition—could also benefit smaller

market or the public resources to establish a holistic regulatory regime.

jurisdictions that lack the consumer demand to motivate companies to enter the

licensing determinations, treating the decisions of one jurisdiction as conclusive in

another could reduce the administrative difficulties that developers might otherwise

Advanced driver assistance and emergency intervention systems might encounter

situations, like a bicyclist who swerves to avoid an opened car door, that require

rapid deceleration or other abrupt maneuvers that may imperil vehicle occupants

who are not belted. Enforcing seatbelt laws could maximize the safety of the people

both inside and outside these vehicles. Governments could also update seatbelt laws

that were originally enacted when seatbelt usage was much less common. In many

states, for example, statutory or common law rules restrict whether or for what

purpose a defendant automaker can introduce evidence than an injured plaintiff was

not wearing her seatbelt. Allowing developers of automated systems to assume that

people who care about their safety will buckle up may help to ease some of the

Primarily promotes all three pathways

"Everything Somewhere"

3) Increasing capability of driverless systems

Primarily promotes driverless systems

For further discussion of each of the strategies below, please see Bryant Walker Smith, How Governments Can Promote Automated Driving, forthcoming at newlypossible.org.

Prepare government

Identify a single point of contact

Learn from credible sources

Account for automation in planning processes

Allocate resources commensurate with expectations

Prepare physical and digital infrastructures

Maintain roadways

Review design, operation, and maintenance policies

Ensure these policies are followed

Strengthen and standardize data management

Update vehicle registration databases

Coordinate with USDOT on DSRC

Prepare society

Educate the public on the dangers of driving today

Develop a break-the-glass plan for automation incidents

Recognize broader technological and social changes

Develop strategies for structural un- and underemployment

Say what you are doing!

At the state level, this person should have the authority and credibility to coordinate among the state's various administrative agencies, between the governor and the legislature, between federal and state authorities, and between state and local authorities. Moreover, this person should act as a liaison between the public and private sectors. Companies and universities in the state may already be engaged in potentially relevant work, and if a large or small developer of automated systems is considering a jurisdiction for development, demonstration, or deployment, it should know precisely whom in government to call.

Roads—even major ones—in much of the United States are in poor condition. Highway lane markings used by some lanekeeping systems are frequently faded or, worse, simply wrong. Potholes and other pavement deficiencies that are unlikely to be detected or avoided by current lane centering systems can be found even on major freeways. Debris and other foreign objects that could conceivably confuse an automated emergency intervention system litter roads and shoulders. Addressing these conditions could help to improve the effectiveness of near-term automated externs.

Data concerning roadways, traffic, incidents, and construction should be current, correct, and accessible. Both the public and the private sector play important roles in the collection, validation, and distribution of these data, which may be used by some advanced driver assistance systems to proactively identify locations needing updated maps and situations needing driver intervention.

Many agencies already have relevant authority. For example, DMVs are generally authorized to deny or revoke the registration of unsafe vehicles. But these agencies do need resources and flexibility. Critically, agencies should have the authority to achieve equivalent ends through different means and to grant exceptions to statutory regimes. At the same time, governments should ensure that local enforcement discretion is exercised consistent with these policy decisions.

Policies that make vehicle owners and operators bear the true cost of driving will indirectly benefit technologies that produce gains in fuel efficiency or safety. Similarly, eliminating free and underpriced parking could encourage automation—enabled ridesharing by discouraging individual vehicle ownership.

design challenges that these developers face.

Developing a project proposal grounded in the particular conditions of the particular community can help to attract and focus local attention. At some point, the proposal could become the basis for an FTA grant application or a pitch to a private developer of automated systems.

these issues proactively and ultimately positively signals its credibility as a potential technological partner.

Who will respond publicly to a crash, and how? What relationships will be essential to effective coordination? What evidence and information will need to be preserved, and how? Especially if officials have publicly embraced the potential of these technologies, how

will they address any fear or outrage that results from a high-profile crash, regardless of where it occurs? A government that addresses

States, counties, and municipalities in the United States own nearly 1.5 million cars, 500,000 buses, and another 1.5 million trucks. If the turnover rate for these fleets is ten percent, then these governments purchase some 350,000 vehicles annually—five times more each year than Tesla has sold in its entire existence. Because of contracts and concessions, the number of vehicles closely associated with government services is likely even greater.

Giving insurers the data, the flexibility, and potentially even the mandate to accurately and precisely price driving risks could help smooth the introduction of automated vehicles.

Prepare legal infrastructure

Do not just pass a new law

Audit existing law

Inventory existing legal tools

Ask developers what they need

Seek uniformity of underlying law

Embrace regulatory reciprocity

Incorporate technical work into law

Employ generic legal language selectively

Clarify the legal status of novel vehicles and services

Tailor bans on the use of electronic devices

Enforce laws on speeding, texting, and drunk driving

Strengthen laws on seatbelt use

Embrace regulatory flexibility

Clarify enforcement discretion

Internalize the costs of driving

Raise fuel taxes

Raise mandatory insurance minimums

Raise or impose parking prices

Rationalize insurance

Facilitate access to data

Provide flexibility to insurers and customers

Embrace pay-as-you-drive models

Identify local needs and opportunities

Promote unique community attributes

Inventory local activity centers (e.g., campuses, CBDs, ports)

Develop project proposals (public/private; local/other)

Deploy public resources strategically

Preference safety systems in fleet procurement, service contracts, and concessions Reduce subsidies for private vehicle ownership

Seek the creative use of HOV/HOT lanes, sidewalks, living streets, traffic signals, etc.

Identify allies and constituencies

Map an entire chain of support from governor to police chief

Reach out to local advocacy groups

Reach out to large companies based locally (e.g., insurers, hospitals)

For more information, please see the materials at newlypossible.org:

lawofthe newly Ossible newlypossible.org

Prepare Inform Clarify Restrict Promote

Who is responsible for a driverless car accident?

© 8 October 2015 Technology

Liability for accidents involving driverless cars is becoming a big issue worldwide

Crashes without automation with automation?

Crashes

Crashes without automation with automation?

Crashes

Crashes without automation with automation?

Crashes

Crashes with automation: Some types of product failure

The automated driving system ...

- ... performed worse than a human
- ... performed worse than a better system
- ... interacted poorly with the user
- ... interacted poorly with other systems
- ... used bad data
- ... supplied bad data
- ... facilitated a security breach
- ... degraded ungracefully

Without automation

With automation?

Product liability

Compared to individual drivers, manufacturers ...

... may face higher jury awards

... may be more likely to be solvent

... may pay more through J&S liability

Product failure

Product liability tomorrow

Product liability without automation

Product liability with automation?

Product liability tomorrow

Product liability tomorrow: A bigger slice of a smaller pie (of liability)?

Product liability without automation

Who cares?

Consumers Developers Society Liability uncertainty? Slower deployment? Slower adoption? Liability exposure? Higher cost? Slower adoption?

Is this testable?

"The prospect of liability for catastrophic accidents resulting from a failure of AVCS will likely deter entities from becoming involved with AVCS and impede its development unless the federal government adopts some or all of the legislative [limits on liability]."

Advanced Vehicle Control Systems: Potential Tort Liability for Developers (prepared for FHWA in 1993)

https://upload.wikimedia.org/wikipedia/commons/5/59/DHL-BX08KLD.jpg

https://en.wikipedia.org/wiki/File:Tessie_Reynolds_02.jpg

lawofthe newly Ossible newlypossible.org